Update AMD test definitions (2025-12-08) (#30298)

Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
This commit is contained in:
Alexei-V-Ivanov-AMD 2025-12-09 11:31:30 -06:00 committed by GitHub
parent 83319b44c2
commit 804e3468c0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -398,7 +398,8 @@ steps:
timeout_in_minutes: 25
gpu: h100
source_file_dependencies:
- vllm/
- vllm/v1/attention
- vllm/model_executor/layers
- tests/v1/determinism/
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
@ -440,23 +441,29 @@ steps:
working_dir: "/vllm-workspace/examples"
source_file_dependencies:
- vllm/entrypoints
- vllm/multimodal
- examples/
commands:
- pip install tensorizer # for tensorizer test
# for basic
- python3 offline_inference/basic/chat.py
- python3 offline_inference/basic/generate.py --model facebook/opt-125m
- python3 offline_inference/basic/generate.py --model meta-llama/Llama-2-13b-chat-hf --cpu-offload-gb 10
- python3 offline_inference/basic/chat.py
- python3 offline_inference/prefix_caching.py
- python3 offline_inference/llm_engine_example.py
- python3 offline_inference/basic/classify.py
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
# for multi-modal models
- python3 offline_inference/audio_language.py --seed 0
- python3 offline_inference/vision_language.py --seed 0
- python3 offline_inference/vision_language_pooling.py --seed 0
- python3 offline_inference/vision_language_multi_image.py --seed 0
- python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/encoder_decoder_multimodal.py --model-type whisper --seed 0
- python3 offline_inference/basic/classify.py
- python3 offline_inference/basic/embed.py
- python3 offline_inference/basic/score.py
# for pooling models
- python3 pooling/pooling/vision_language_pooling.py --seed 0
# for features demo
- python3 offline_inference/prefix_caching.py
- python3 offline_inference/llm_engine_example.py
- python3 others/tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 others/tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors
- python3 offline_inference/spec_decode.py --test --method eagle --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 2048
# https://github.com/vllm-project/vllm/pull/26682 uses slightly more memory in PyTorch 2.9+ causing this test to OOM in 1xL4 GPU
- python3 offline_inference/spec_decode.py --test --method eagle3 --num_spec_tokens 3 --dataset-name hf --dataset-path philschmid/mt-bench --num-prompts 80 --temp 0 --top-p 1.0 --top-k -1 --tp 1 --enable-chunked-prefill --max-model-len 1536
@ -718,6 +725,18 @@ steps:
- uv pip install --system conch-triton-kernels
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 53min
timeout_in_minutes: 75
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
autorun_on_main: true
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness # 10min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental, amdproduction]
@ -727,7 +746,7 @@ steps:
- csrc/
- vllm/entrypoints/openai/
- vllm/model_executor/models/whisper.py
commands: # LMEval
commands: # LMEval+Transcription WER check
# Transcription WER check is skipped because encoder-decoder models are not supported on ROCm, see https://github.com/vllm-project/vllm/issues/27442
- pytest -s entrypoints/openai/correctness/
@ -963,6 +982,19 @@ steps:
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Accuracy Eval (Small Models) # 150min - 180min
timeout_in_minutes: 180
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
- vllm/inputs/
- vllm/v1/core/
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: Multi-Modal Models Test (Extended) 1 # 60min
timeout_in_minutes: 120
mirror_hardwares: [amdexperimental]
@ -1098,7 +1130,6 @@ steps:
- vllm/model_executor/layers/layernorm.py
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
- vllm/model_executor/layers/fused_moe/layer.py
- tests/compile/test_fusion_attn.py
- tests/compile/test_silu_mul_quant_fusion.py
- tests/compile/distributed/test_fusion_all_reduce.py
@ -1132,12 +1163,25 @@ steps:
- vllm/model_executor/layers/activation.py
- vllm/model_executor/layers/quantization/input_quant_fp8.py
- tests/compile/distributed/test_fusions_e2e.py
- tests/compile/fullgraph/test_full_graph.py
commands:
- nvidia-smi
# Run all e2e fusion tests
- pytest -v -s tests/compile/distributed/test_fusions_e2e.py
- label: Blackwell GPT-OSS Eval
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
gpu: b200
optional: true # run on nightlies
source_file_dependencies:
- tests/evals/gpt_oss
- vllm/model_executor/models/gpt_oss.py
- vllm/model_executor/layers/quantization/mxfp4.py
- vllm/v1/attention/backends/flashinfer.py
commands:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
- label: Blackwell Quantized MoE Test
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
@ -1155,6 +1199,16 @@ steps:
commands:
- pytest -s -v tests/quantization/test_blackwell_moe.py
- label: Blackwell LM Eval Small Models
timeout_in_minutes: 120
gpu: b200
optional: true # run on nightlies
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
##### 1 GPU test #####
##### multi gpus test #####
@ -1397,6 +1451,39 @@ steps:
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
- pytest -v -s -x lora/test_mixtral.py
- label: LM Eval Large Models # optional
gpu: a100
optional: true
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
# grade: Blocking
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
##### H100 test #####
- label: LM Eval Large Models (H100) # optional
gpu: h100
optional: true
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
# grade: Blocking
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_USE_DEEP_GEMM=0 # We found Triton is faster than DeepGEMM for H100
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-hopper.txt --tp-size=4
##### H200 test #####
- label: Distributed Tests (H200) # optional
mirror_hardwares: [amdexperimental]
@ -1440,29 +1527,6 @@ steps:
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: Blackwell LM Eval Small Models
timeout_in_minutes: 120
gpu: b200
optional: true # run on nightlies
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
- label: Multi-Modal Accuracy Eval (Small Models) # 10min
timeout_in_minutes: 70
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
- vllm/inputs/
- vllm/v1/core/
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: LM Eval Large Models (4 Card)
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
@ -1478,21 +1542,6 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
- label: LM Eval Large Models (H100) # optional
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_USE_DEEP_GEMM=0 # We found Triton is faster than DeepGEMM for H100
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-hopper.txt --tp-size=4
- label: ROCm LM Eval Large Models (8 Card)
mirror_hardwares: [amdproduction]
agent_pool: mi325_8
@ -1517,6 +1566,20 @@ steps:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- VLLM_ROCM_USE_AITER_MHA=0 VLLM_ROCM_USE_AITER=1 VLLM_USE_AITER_UNIFIED_ATTENTION=1 pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
##### RL Integration Tests #####
- label: Prime-RL Integration Test # 15min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_2
# grade: Blocking
timeout_in_minutes: 30
optional: true
num_gpus: 2
working_dir: "/vllm-workspace"
source_file_dependencies:
- vllm/
- .buildkite/scripts/run-prime-rl-test.sh
commands:
- bash .buildkite/scripts/run-prime-rl-test.sh
- label: DeepSeek V2-Lite Accuracy
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
@ -1550,17 +1613,26 @@ steps:
commands:
- bash .buildkite/scripts/scheduled_integration_test/qwen30b_a3b_fp8_block_ep_eplb.sh 0.8 200 8020 2 1
##### RL Integration Tests #####
- label: Prime-RL Integration Test # 15min
- label: DeepSeek V2-Lite Async EPLB Accuracy
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
agent_pool: mi325_2
agent_pool: mi325_4
# grade: Blocking
timeout_in_minutes: 30
gpu: h100
optional: true
num_gpus: 2
num_gpus: 4
working_dir: "/vllm-workspace"
source_file_dependencies:
- vllm/
- .buildkite/scripts/run-prime-rl-test.sh
commands:
- bash .buildkite/scripts/run-prime-rl-test.sh
- bash .buildkite/scripts/scheduled_integration_test/deepseek_v2_lite_ep_async_eplb.sh 0.25 1319 8030
- label: Qwen3-Next-80B-A3B-Instruct MTP Async EPLB Accuracy
timeout_in_minutes: 60
mirror_hardwares: [amdexperimental]
agent_pool: mi325_4
# grade: Blocking
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace"
commands:
- bash .buildkite/scripts/scheduled_integration_test/qwen3_next_mtp_async_eplb.sh 0.8 1319 8040