[Hardware][Intel CPU] Adding intel openmp tunings in Docker file (#6008)

Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
This commit is contained in:
Yuan 2024-07-05 06:22:12 +08:00 committed by GitHub
parent 27902d42be
commit 81d7a50f24
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 37 additions and 5 deletions

View File

@ -12,8 +12,10 @@ trap remove_docker_container EXIT
remove_docker_container
# Run the image
docker run -itd -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 --cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test cpu-test
docker run -itd -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 --cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test-avx2 cpu-test-avx2
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test cpu-test
docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --cpuset-cpus=48-95 \
--cpuset-mems=1 --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --name cpu-test-avx2 cpu-test-avx2
# offline inference
docker exec cpu-test bash -c "python3 examples/offline_inference.py"

View File

@ -6,7 +6,13 @@ RUN apt-get update -y \
&& apt-get install -y git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
RUN echo 'export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:$LD_PRELOAD' >> ~/.bashrc
# https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html
# intel-openmp provides additional performance improvement vs. openmp
# tcmalloc provides better memory allocation efficiency, e.g, holding memory in caches to speed up access of commonly-used objects.
RUN pip install intel-openmp
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/usr/local/lib/libiomp5.so:$LD_PRELOAD"
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/cpu/intel_extension_for_pytorch-2.3.100%2Bgit0eb3473-cp310-cp310-linux_x86_64.whl
@ -31,4 +37,4 @@ WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
CMD ["/bin/bash"]
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -398,6 +398,27 @@ def update_environment_variables(envs: Dict[str, str]):
os.environ[k] = v
def init_kmp_env():
if not is_cpu():
return
ld_prealod_str = os.getenv("LD_PRELOAD", "")
if "libiomp5.so" not in ld_prealod_str:
return
# The time(milliseconds) that a thread should wait after completing the
# execution of a parallel region, before sleeping.
os.environ['KMP_BLOCKTIME'] = "1"
# dump settings on start up
os.environ['KMP_SETTINGS'] = "1"
# Prevents the CPU to run into low performance state
os.environ['KMP_TPAUSE'] = "0"
# Provides fine granularity parallelism
os.environ['KMP_FORKJOIN_BARRIER_PATTERN'] = "dist,dist"
os.environ['KMP_PLAIN_BARRIER_PATTERN'] = "dist,dist"
os.environ['KMP_REDUCTION_BARRIER_PATTERN'] = "dist,dist"
def chunk_list(lst: List[T], chunk_size: int) -> List[List[T]]:
"""Yield successive chunk_size chunks from lst."""
return [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)]

View File

@ -13,7 +13,7 @@ from vllm.distributed import (ensure_model_parallel_initialized,
from vllm.logger import init_logger
from vllm.model_executor import set_random_seed
from vllm.sequence import ExecuteModelRequest
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, init_kmp_env
from vllm.worker.cpu_model_runner import CPUModelRunner
from vllm.worker.worker_base import (LocalOrDistributedWorkerBase,
LoraNotSupportedWorkerBase, WorkerInput)
@ -150,6 +150,9 @@ class CPUWorker(LoraNotSupportedWorkerBase, LocalOrDistributedWorkerBase):
if self.is_driver_worker:
assert self.rank == 0, "The driver worker must have rank 0."
# try to initialize intel openmp optimized tunings
init_kmp_env()
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules