[NVIDIA] Support Flashinfer TRT-LLM Prefill Attention Kernel (#22095)

Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
This commit is contained in:
elvischenv 2025-08-05 17:45:34 +08:00 committed by GitHub
parent 4771df7b2b
commit 83156c7b89
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 700 additions and 234 deletions

View File

@ -664,7 +664,7 @@ steps:
# Attention
# num_heads2 broken by https://github.com/flashinfer-ai/flashinfer/issues/1353
- pytest -v -s tests/kernels/attention/test_flashinfer.py -k 'not num_heads2'
- pytest -v -s tests/kernels/attention/test_flashinfer_trtllm_decode_attention.py
- pytest -v -s tests/kernels/attention/test_flashinfer_trtllm_attention.py
- pytest -v -s tests/kernels/test_cutlass_mla_decode.py
# Quantization
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'

View File

@ -41,7 +41,6 @@ def benchmark_decode(
device = "cuda"
torch.manual_seed(0)
# Currently only HEAD_GRP_SIZE == 8 is supported
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len

View File

@ -0,0 +1,250 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import csv
import os
import random
from datetime import datetime
import flashinfer
import torch
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
def to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax * 0.1
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype), scale.float().reciprocal()
@torch.no_grad()
def benchmark_prefill(
num_seqs,
max_seq_len,
page_size=16,
dtype=torch.bfloat16,
kv_layout="HND",
num_kv_heads=8,
kv_cache_dtype="auto",
head_dim=128,
warmup=10,
trials=20,
):
torch.set_default_device("cuda")
torch.manual_seed(0)
HEAD_GRP_SIZE = 8
MAX_SEQ_LEN = max_seq_len
# large number to reduce kv_cache reuse
NUM_BLOCKS = int(256000 / page_size)
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8)
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
sm_scale = float(1.0 / (head_dim**0.5))
q_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
q_lens[-1] = MAX_SEQ_LEN
max_q_len = max(q_lens)
q_indptr = torch.cat(
[
torch.tensor([0], dtype=torch.int32),
torch.cumsum(
torch.tensor(q_lens, dtype=torch.int32), dim=0, dtype=torch.int32
),
]
)
q = torch.randn(sum(q_lens), num_qo_heads, head_dim, dtype=dtype)
kv_lens = [random.randint(0, MAX_SEQ_LEN) for _ in range(num_seqs)]
kv_lens[-1] = MAX_SEQ_LEN
seq_lens = [q_len + kv_len for q_len, kv_len in zip(q_lens, kv_lens)]
max_seq_len = max(seq_lens)
seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int32)
max_num_blocks_per_seq = (max_seq_len + page_size - 1) // page_size
block_tables = torch.randint(
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
)
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
kv_cache = torch.randn(size=kv_cache_shape, dtype=dtype)
k_scale = v_scale = 1.0
if kv_cache_dtype.startswith("fp8"):
kv_cache, _ = to_float8(kv_cache)
output_trtllm = torch.empty(q.shape, dtype=dtype)
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = seq_lens[i]
assert seq_len > 0
num_blocks = (seq_len + page_size - 1) // page_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % page_size
if kv_last_page_len == 0:
kv_last_page_len = page_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
output_baseline = torch.empty(q.shape, dtype=dtype)
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(
workspace_buffer, kv_layout
)
wrapper.plan(
q_indptr,
kv_indptr,
kv_indices,
kv_last_page_lens,
num_qo_heads,
num_kv_heads,
head_dim,
page_size,
causal=True,
sm_scale=sm_scale,
q_data_type=dtype,
kv_data_type=kv_cache.dtype,
)
def time_fn(fn, warmup=10, trials=20):
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
times = []
for i in range(warmup):
fn()
for i in range(trials):
start.record()
fn()
end.record()
torch.cuda.synchronize()
times.append(start.elapsed_time(end)) # ms
return sum(times) / len(times), torch.std(torch.tensor(times))
def baseline_prefill():
return wrapper.run(
q, kv_cache, k_scale=k_scale, v_scale=v_scale, out=output_baseline
)
def trt_prefill():
return flashinfer.prefill.trtllm_batch_context_with_kv_cache(
query=q,
kv_cache=kv_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=seq_lens_tensor,
max_q_len=max_q_len,
max_kv_len=max_seq_len,
bmm1_scale=k_scale * sm_scale,
bmm2_scale=v_scale,
batch_size=num_seqs,
cum_seq_lens_q=q_indptr,
cum_seq_lens_kv=kv_indptr,
out=output_trtllm,
)
trt_mean, trt_std = time_fn(trt_prefill)
baseline_mean, baseline_std = time_fn(baseline_prefill)
# Calculate percentage speedup (positive means TRT is faster)
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
print(
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.5f}\t{trt_std.item():.5f}"
f"\t{baseline_mean:.5f}\t{baseline_std.item():.5f}\t{speedup_percent:.5f}"
)
# Return results for CSV writing
return {
"num_seqs": num_seqs,
"trt_mean": trt_mean,
"trt_std": trt_std.item(),
"baseline_mean": baseline_mean,
"baseline_std": baseline_std.item(),
"speedup_percent": speedup_percent,
"q_dtype": str(dtype),
"kv_cache_dtype": kv_cache_dtype,
"page_size": page_size,
"num_kv_heads": num_kv_heads,
"head_dim": head_dim,
"max_seq_len": max_seq_len,
}
def write_results_to_csv(results, filename=None):
"""Write benchmark results to CSV file."""
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
fieldnames = [
"num_seqs",
"trt_mean",
"trt_std",
"baseline_mean",
"baseline_std",
"speedup_percent",
"q_dtype",
"kv_cache_dtype",
"page_size",
"num_kv_heads",
"head_dim",
"max_seq_len",
]
file_exists = os.path.exists(filename)
with open(filename, "a", newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
for result in results:
writer.writerow(result)
print(f"Results written to {filename}")
if __name__ == "__main__":
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
all_results = []
print(
"Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, "
"output_dtype: bfloat16"
)
print(
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t"
"baseline_std\tspeedup_percent"
)
for max_seq_len in max_seq_lens:
for bs in num_seqs:
result = benchmark_prefill(
bs,
max_seq_len,
dtype=torch.bfloat16,
kv_cache_dtype="auto",
)
all_results.append(result)
# Write all results to CSV
write_results_to_csv(all_results)

View File

@ -0,0 +1,293 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import flashinfer
import pytest
import torch
from vllm.platforms import current_platform
if not current_platform.is_device_capability(100):
pytest.skip("This TRTLLM kernel requires NVIDIA Blackwell.",
allow_module_level=True)
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
MAX_Q_LEN = 1024
MAX_KV_LEN = 4096
BATCH_SIZES = [4, 12]
NUM_HEADS = [(64, 8), (16, 16), (40, 8), (32, 8)]
HEAD_SIZES = [128]
BLOCK_SIZES = [16, 32]
KV_LAYOUTS = ["HND"]
DTYPES = [torch.float16, torch.bfloat16]
KV_CACHE_DTYPES = [None, current_platform.fp8_dtype()]
NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation.
SOFT_CAPS = [None, 50.0]
def to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax * 0.1
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype), scale.float().reciprocal()
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("kv_layout", KV_LAYOUTS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
@pytest.mark.parametrize("soft_cap", SOFT_CAPS)
@torch.inference_mode
def test_flashinfer_trtllm_decode_with_baseline(
batch_size: int,
num_heads: tuple[int, int],
head_size: int,
block_size: int,
kv_layout: str,
dtype: torch.dtype,
kv_cache_dtype: Optional[torch.dtype],
soft_cap: Optional[float],
) -> None:
kv_cache_dtype = dtype if kv_cache_dtype is None else kv_cache_dtype
torch.set_default_device("cuda")
current_platform.seed_everything(0)
kv_lens = torch.randint(1, MAX_KV_LEN, (batch_size, ), dtype=torch.int32)
kv_lens[-1] = MAX_KV_LEN
max_kv_len = torch.max(kv_lens).item()
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
scale = head_size**-0.5
query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
kv_cache_shape = None
if kv_layout == "NHD":
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
elif kv_layout == "HND":
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
key_value_cache = torch.randn(kv_cache_shape, dtype=dtype)
kv_scale = 1.0
if kv_cache_dtype is current_platform.fp8_dtype():
key_value_cache, kv_scale = to_float8(key_value_cache,
current_platform.fp8_dtype())
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
NUM_BLOCKS,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)
k_scale = v_scale = kv_scale
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = kv_lens[i]
assert seq_len > 0
num_blocks = (seq_len + block_size - 1) // block_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % block_size
if kv_last_page_len == 0:
kv_last_page_len = block_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8)
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer,
kv_layout,
use_tensor_cores=((num_query_heads // num_kv_heads) > 4))
wrapper.plan(kv_indptr,
kv_indices,
kv_last_page_lens,
num_query_heads,
num_kv_heads,
head_size,
block_size,
"NONE",
sm_scale=scale,
q_data_type=dtype,
kv_data_type=kv_cache_dtype,
logits_soft_cap=soft_cap)
output = torch.empty(query.shape, dtype=dtype)
wrapper.run(query,
key_value_cache,
k_scale=k_scale,
v_scale=v_scale,
out=output)
# TRTLLM Decode
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)
output_trtllm = torch.empty(query.shape, dtype=dtype)
flashinfer.decode.trtllm_batch_decode_with_kv_cache(
query=query.contiguous(),
kv_cache=key_value_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=kv_lens_tensor,
max_seq_len=max_kv_len,
bmm1_scale=k_scale * scale,
bmm2_scale=v_scale,
out=output_trtllm,
)
torch.testing.assert_close(output, output_trtllm, atol=1e-2, rtol=1e-2), \
f"{torch.max(torch.abs(output - output_trtllm))}"
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("kv_layout", KV_LAYOUTS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
@pytest.mark.parametrize("soft_cap", [None])
@torch.inference_mode
def test_flashinfer_trtllm_prefill_with_baseline(
batch_size: int,
num_heads: tuple[int, int],
head_size: int,
block_size: int,
kv_layout: str,
dtype: torch.dtype,
kv_cache_dtype: Optional[torch.dtype],
soft_cap: Optional[float],
) -> None:
kv_cache_dtype = dtype if kv_cache_dtype is None else kv_cache_dtype
if dtype != kv_cache_dtype:
pytest.skip(f"Not supported dtype({dtype}) with "
"kv_cache_dtype({kv_cache_dtype})")
torch.set_default_device("cuda")
current_platform.seed_everything(0)
q_lens = torch.randint(1, MAX_Q_LEN, (batch_size, ), dtype=torch.int32)
q_lens[-1] = MAX_Q_LEN
max_q_len = torch.max(q_lens).item()
q_indptr = torch.cat([
torch.tensor([0], dtype=torch.int32),
torch.cumsum(q_lens, dim=0, dtype=torch.int32),
])
kv_lens = torch.randint(0, MAX_KV_LEN, (batch_size, ), dtype=torch.int32)
kv_lens[-1] = MAX_KV_LEN
seq_lens = kv_lens + q_lens
max_seq_len = torch.max(seq_lens).item()
num_seqs = len(seq_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
scale = head_size**-0.5
query = torch.randn(torch.sum(q_lens).item(),
num_query_heads,
head_size,
dtype=dtype)
kv_cache_shape = None
if kv_layout == "NHD":
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
elif kv_layout == "HND":
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
key_value_cache = torch.randn(kv_cache_shape, dtype=dtype)
kv_scale = 1.0
if kv_cache_dtype is current_platform.fp8_dtype():
key_value_cache, kv_scale = to_float8(key_value_cache,
current_platform.fp8_dtype())
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
block_tables = torch.randint(0,
NUM_BLOCKS,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)
k_scale = v_scale = kv_scale
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = seq_lens[i]
assert seq_len > 0
num_blocks = (seq_len + block_size - 1) // block_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % block_size
if kv_last_page_len == 0:
kv_last_page_len = block_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8)
wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(
workspace_buffer, kv_layout)
wrapper.plan(q_indptr,
kv_indptr,
kv_indices,
kv_last_page_lens,
num_query_heads,
num_kv_heads,
head_size,
block_size,
causal=True,
sm_scale=scale,
q_data_type=dtype,
kv_data_type=kv_cache_dtype,
logits_soft_cap=soft_cap)
output = torch.empty(query.shape, dtype=dtype)
wrapper.run(query,
key_value_cache,
k_scale=k_scale,
v_scale=v_scale,
out=output)
# TRTLLM Decode
output_trtllm = torch.empty(query.shape, dtype=dtype)
flashinfer.prefill.trtllm_batch_context_with_kv_cache(
query=query.contiguous(),
kv_cache=key_value_cache,
workspace_buffer=workspace_buffer,
block_tables=block_tables,
seq_lens=seq_lens,
max_q_len=max_q_len,
max_kv_len=max_seq_len,
bmm1_scale=k_scale * scale,
bmm2_scale=v_scale,
batch_size=num_seqs,
cum_seq_lens_q=q_indptr,
cum_seq_lens_kv=kv_indptr,
out=output_trtllm,
)
torch.testing.assert_close(output, output_trtllm, atol=1e-2, rtol=1e-2), \
f"{torch.max(torch.abs(output - output_trtllm))}"

View File

@ -1,138 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import flashinfer
import pytest
import torch
from vllm.platforms import current_platform
if not current_platform.is_device_capability(100):
pytest.skip("This TRTLLM kernel requires NVIDIA Blackwell.",
allow_module_level=True)
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# KV Cache Layout for TRT-LLM
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
NUM_HEADS = [(64, 8), (16, 16), (40, 8), (32, 8)]
HEAD_SIZES = [128]
BLOCK_SIZES = [16, 32]
DTYPES = [torch.float16, torch.bfloat16]
NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation.
SOFT_CAPS = [None, 30.0, 50.0]
def to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax * 0.1
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype), scale.float().reciprocal()
@pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("kv_layout", ["HND"])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("soft_cap", SOFT_CAPS)
@torch.inference_mode
def test_flashinfer_trtllm_decode_with_baseline(
kv_lens: list[int],
num_heads: tuple[int, int],
head_size: int,
dtype: torch.dtype,
block_size: int,
soft_cap: Optional[float],
kv_layout: str,
) -> None:
torch.set_default_device("cuda")
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
max_kv_len = max(kv_lens)
scale = head_size**-0.5
query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
kv_cache_shape = None
if kv_layout == "NHD":
kv_cache_shape = (NUM_BLOCKS, 2, block_size, num_kv_heads, head_size)
elif kv_layout == "HND":
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, block_size, head_size)
else:
raise ValueError(f"Invalid kv_layout: {kv_layout}")
key_value_cache = torch.randn(kv_cache_shape, dtype=dtype)
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
NUM_BLOCKS,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)
k_scale = v_scale = 1.0
kv_indptr = [0]
kv_indices = []
kv_last_page_lens = []
for i in range(num_seqs):
seq_len = kv_lens[i]
assert seq_len > 0
num_blocks = (seq_len + block_size - 1) // block_size
kv_indices.extend(block_tables[i, :num_blocks])
kv_indptr.append(kv_indptr[-1] + num_blocks)
kv_last_page_len = seq_len % block_size
if kv_last_page_len == 0:
kv_last_page_len = block_size
kv_last_page_lens.append(kv_last_page_len)
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8)
wrapper = flashinfer.\
BatchDecodeWithPagedKVCacheWrapper(workspace_buffer, kv_layout,
use_tensor_cores=(
(num_query_heads//num_kv_heads) > 4)
)
wrapper.plan(kv_indptr,
kv_indices,
kv_last_page_lens,
num_query_heads,
num_kv_heads,
head_size,
block_size,
"NONE",
q_data_type=dtype,
kv_data_type=dtype,
logits_soft_cap=soft_cap)
output = torch.empty(query.shape, dtype=dtype)
wrapper.run(query, key_value_cache, scale, out=output)
# TRTLLM Decode
max_kv_len = max(kv_lens)
kv_lens_tensor = torch.tensor(kv_lens,
dtype=torch.int,
device=query.device)
output_trtllm = torch.empty(query.shape, dtype=dtype)
flashinfer.decode.trtllm_batch_decode_with_kv_cache(
query.contiguous(),
key_value_cache,
workspace_buffer,
block_tables,
kv_lens_tensor,
max_kv_len,
bmm1_scale=k_scale * scale,
bmm2_scale=v_scale,
out=output_trtllm,
)
torch.testing.assert_close(output, output_trtllm, atol=1e-2, rtol=1e-2), \
f"{torch.max(torch.abs(output - output_trtllm))}"

View File

@ -46,7 +46,7 @@ from vllm.config import VllmConfig, get_layers_from_vllm_config
from vllm.logger import init_logger
from vllm.utils import (async_tensor_h2d, get_kv_cache_torch_dtype,
make_tensor_with_pad)
from vllm.utils.flashinfer import use_trtllm_decode_attention
from vllm.utils.flashinfer import use_trtllm_attention
logger = init_logger(__name__)
@ -1114,7 +1114,7 @@ class FlashInferImpl(AttentionImpl):
assert decode_meta.decode_wrapper._sm_scale == softmax_scale
# TODO: @pavanimajety Remove this once the switch happens
# inside flashinfer.
if not use_trtllm_decode_attention(
if not use_trtllm_attention(
num_decode_tokens, attn_metadata.max_decode_seq_len,
kv_cache_dtype, attn_metadata.num_qo_heads,
attn_metadata.num_kv_heads, attn_metadata.head_dim):

View File

@ -1027,9 +1027,9 @@ environment_variables: dict[str, Callable[[], Any]] = {
"VLLM_USE_CUDNN_PREFILL":
lambda: bool(int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))),
# If set to 1, use the TRTLLM Decode Attention backend in flashinfer.
"VLLM_USE_TRTLLM_DECODE_ATTENTION":
lambda: os.getenv("VLLM_USE_TRTLLM_DECODE_ATTENTION", None),
# If set to 1, use the TRTLLM Attention backend in flashinfer.
"VLLM_USE_TRTLLM_ATTENTION":
lambda: os.getenv("VLLM_USE_TRTLLM_ATTENTION", None),
# Controls garbage collection during CUDA graph capture.
# If set to 0 (default), enables GC freezing to speed up capture time.

View File

@ -124,7 +124,7 @@ def has_flashinfer_cutlass_fused_moe() -> bool:
@functools.cache
def has_nvidia_artifactory() -> bool:
"""Return ``True`` if NVIDIA's artifactory is accessible.
This checks connectivity to the kernel inference library artifactory
which is required for downloading certain cubin kernels like TRTLLM FHMA.
"""
@ -144,7 +144,7 @@ def has_nvidia_artifactory() -> bool:
return False
def use_trtllm_decode_attention(
def use_trtllm_attention(
num_tokens: int,
max_seq_len: int,
kv_cache_dtype: str,
@ -159,29 +159,26 @@ def use_trtllm_decode_attention(
# Check if the dimensions are supported by TRTLLM decode attention
if (attn_head_size is None or num_qo_heads is None or num_kv_heads is None
or num_qo_heads // num_kv_heads > 8
or num_qo_heads % num_kv_heads != 0 or attn_head_size != 128):
return False
env_value = envs.VLLM_USE_TRTLLM_DECODE_ATTENTION
env_value = envs.VLLM_USE_TRTLLM_ATTENTION
if env_value is not None:
logger.info_once("VLLM_USE_TRTLLM_DECODE_ATTENTION is set to %s",
env_value)
logger.info_once("VLLM_USE_TRTLLM_ATTENTION is set to %s", env_value)
# Environment variable is set - respect it
# Making the conditional check for zero because
# the path is automatically enabled if the batch size condition
# is satisfied.
no_use_trtllm = (env_value == "0")
if not no_use_trtllm:
logger.info_once("Using TRTLLM decode attention.")
logger.info_once("Using TRTLLM attention.")
return not no_use_trtllm
else:
# Environment variable not set - use auto-detection
use_trtllm = (num_tokens <= 256 and max_seq_len < 131072
and kv_cache_dtype == "auto")
if use_trtllm:
logger.warning_once(
"Using TRTLLM decode attention (auto-detected).")
logger.warning_once("Using TRTLLM attention (auto-detected).")
return use_trtllm
@ -195,5 +192,5 @@ __all__ = [
"has_flashinfer_moe",
"has_flashinfer_cutlass_fused_moe",
"has_nvidia_artifactory",
"use_trtllm_decode_attention",
"use_trtllm_attention",
]

View File

@ -12,6 +12,7 @@ from flashinfer import (BatchDecodeWithPagedKVCacheWrapper,
MultiLevelCascadeAttentionWrapper)
from flashinfer.decode import (_get_range_buf, get_seq_lens,
trtllm_batch_decode_with_kv_cache)
from flashinfer.prefill import trtllm_batch_context_with_kv_cache
import vllm.envs as envs
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
@ -19,7 +20,7 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.utils import cdiv, is_pin_memory_available
from vllm.utils.flashinfer import use_trtllm_decode_attention
from vllm.utils.flashinfer import use_trtllm_attention
from vllm.v1.attention.backends.flash_attn import use_cascade_attention
# yapf conflicts with isort for this block
# yapf: disable
@ -149,9 +150,12 @@ class FlashInferMetadata:
slot_mapping: torch.Tensor
# For flashinfer trtllm batch decode
max_q_len: int
max_seq_len: int
seq_lens: torch.Tensor
block_table_tensor: torch.Tensor
prefill_use_trtllm: bool
decode_use_trtllm: bool
# For handling prefill decode split
num_decodes: int
@ -170,6 +174,9 @@ class FlashInferMetadata:
decode_wrapper: Optional[BatchDecodeWithPagedKVCacheWrapper] = None
cascade_wrapper: Optional[MultiLevelCascadeAttentionWrapper] = None
qo_indptr_gpu: Optional[torch.Tensor] = None
paged_kv_indptr_gpu: Optional[torch.Tensor] = None
def __post_init__(self):
if self.head_dim is not None:
FlashInferBackend.validate_head_size(self.head_dim)
@ -305,8 +312,7 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
2, self._get_workspace_buffer(), get_kv_cache_layout())
return self._cascade_wrapper
def _plan(self, num_prefills: int, num_decodes: int,
attn_metadata: FlashInferMetadata):
def _plan(self, attn_metadata: FlashInferMetadata):
if attn_metadata.use_cascade:
attn_metadata.cascade_wrapper = self._get_cascade_wrapper()
attn_metadata.cascade_wrapper.plan(
@ -341,6 +347,8 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
# Regular attention (common case).
# Decodes are at the front and prefills are at the back,
# according to reorder_batch()
num_prefills = attn_metadata.num_prefills
num_decodes = attn_metadata.num_decodes
if num_prefills > 0:
# Decodes are first so prefills start after the last decode
prefill_start = num_decodes
@ -356,23 +364,31 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
# to be relative to the start of the prefill queries.
qo_indptr_cpu = attn_metadata.qo_indptr_cpu[
prefill_start:] - attn_metadata.qo_indptr_cpu[prefill_start]
attn_metadata.prefill_wrapper.plan(
qo_indptr_cpu,
attn_metadata.paged_kv_indptr_cpu[prefill_start:],
attn_metadata.paged_kv_indices,
attn_metadata.paged_kv_last_page_len_cpu[prefill_start:],
attn_metadata.num_qo_heads,
attn_metadata.num_kv_heads,
attn_metadata.head_dim,
attn_metadata.page_size,
causal=True,
sm_scale=self.global_hyperparameters.sm_scale,
window_left=self.global_hyperparameters.window_left,
logits_soft_cap=self.global_hyperparameters.
logits_soft_cap,
q_data_type=attn_metadata.q_data_type,
kv_data_type=attn_metadata.kv_data_type,
)
paged_kv_indptr_cpu = attn_metadata.paged_kv_indptr_cpu[
prefill_start:]
if not attn_metadata.prefill_use_trtllm:
attn_metadata.prefill_wrapper.plan(
qo_indptr_cpu,
paged_kv_indptr_cpu,
attn_metadata.paged_kv_indices,
attn_metadata.
paged_kv_last_page_len_cpu[prefill_start:],
attn_metadata.num_qo_heads,
attn_metadata.num_kv_heads,
attn_metadata.head_dim,
attn_metadata.page_size,
causal=True,
sm_scale=self.global_hyperparameters.sm_scale,
window_left=self.global_hyperparameters.window_left,
logits_soft_cap=self.global_hyperparameters.
logits_soft_cap,
q_data_type=attn_metadata.q_data_type,
kv_data_type=attn_metadata.kv_data_type,
)
else:
attn_metadata.qo_indptr_gpu = qo_indptr_cpu.to(self.device)
attn_metadata.paged_kv_indptr_gpu = paged_kv_indptr_cpu.to(
self.device)
if num_decodes > 0:
pure_decode = num_prefills == 0
@ -400,11 +416,7 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
attn_metadata.decode_wrapper = self._get_decode_wrapper(
num_input_tokens, use_cudagraph)
if not use_trtllm_decode_attention(
num_decodes, attn_metadata.max_seq_len,
self.cache_config.cache_dtype,
attn_metadata.num_qo_heads, attn_metadata.num_kv_heads,
attn_metadata.head_dim):
if not attn_metadata.decode_use_trtllm:
# Use the persistent buffer with padding length,
# instead of the same address but chunked version
# in atten_metadata when using cudagraph.
@ -437,6 +449,7 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
split_decodes_and_prefills(common_attn_metadata)
page_size = self.kv_cache_spec.block_size
max_q_len = common_attn_metadata.max_query_len
max_seq_len = common_attn_metadata.seq_lens_cpu.max()
seq_lens = common_attn_metadata.seq_lens
seq_lens_cpu = common_attn_metadata.seq_lens_cpu
@ -503,6 +516,24 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
cache_dtype)
else:
kv_cache_dtype = self.kv_cache_spec.dtype
num_qo_heads = self.vllm_config.model_config.get_num_attention_heads(
self.vllm_config.parallel_config)
num_kv_heads = self.kv_cache_spec.num_kv_heads
head_dim = self.kv_cache_spec.head_size
# currently prefill trtllm attention does not support fp8 kv cache
# trtllm may not support sliding window
prefill_use_trtllm = (self.global_hyperparameters.window_left == -1
and not cache_dtype.startswith("fp8")
and use_trtllm_attention(
num_prefill_tokens, max_seq_len, cache_dtype,
num_qo_heads, num_kv_heads, head_dim))
decode_use_trtllm = (self.global_hyperparameters.window_left == -1
and use_trtllm_attention(
num_decode_tokens, max_seq_len, cache_dtype,
num_qo_heads, num_kv_heads, head_dim))
attn_metadata = FlashInferMetadata(
num_actual_tokens=num_actual_tokens,
qo_indptr_cpu=common_attn_metadata.query_start_loc_cpu,
@ -510,14 +541,19 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
paged_kv_indices=paged_kv_indices,
paged_kv_last_page_len_cpu=self.
paged_kv_last_page_len_cpu[:num_reqs],
num_qo_heads=self.vllm_config.model_config.get_num_attention_heads(
self.vllm_config.parallel_config),
num_kv_heads=self.kv_cache_spec.num_kv_heads,
head_dim=self.kv_cache_spec.head_size,
num_qo_heads=num_qo_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
page_size=page_size,
kv_data_type=kv_cache_dtype,
q_data_type=self.vllm_config.model_config.dtype,
slot_mapping=common_attn_metadata.slot_mapping,
max_q_len=max_q_len,
max_seq_len=max_seq_len,
seq_lens=seq_lens,
block_table_tensor=block_table_tensor,
prefill_use_trtllm=prefill_use_trtllm,
decode_use_trtllm=decode_use_trtllm,
num_decodes=num_decodes,
num_decode_tokens=num_decode_tokens,
num_prefills=num_prefills,
@ -527,12 +563,9 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
shared_kv_page_indptr_cpu=shared_kv_page_indptr_cpu,
shared_kv_page_indices_cpu=shared_kv_page_indices_cpu,
shared_kv_last_page_len_cpu=shared_kv_last_page_len_cpu,
max_seq_len=max_seq_len,
seq_lens=seq_lens,
block_table_tensor=block_table_tensor,
)
self._plan(num_prefills, num_decodes, attn_metadata)
self._plan(attn_metadata)
return attn_metadata
@ -698,30 +731,64 @@ class FlashInferImpl(AttentionImpl):
# Regular attention (common case).
# Decodes are at the front and prefills are at the back,
# according to reorder_batch()
if prefill_wrapper := attn_metadata.prefill_wrapper:
if num_prefill_tokens > 0:
prefill_wrapper = attn_metadata.prefill_wrapper
prefill_query = query[num_decode_tokens:]
assert prefill_query.shape[0] == num_prefill_tokens
assert prefill_wrapper is not None
assert prefill_wrapper._causal
assert prefill_wrapper._window_left == window_left
assert prefill_wrapper._logits_soft_cap == (self.logits_soft_cap
or 0.0)
assert prefill_wrapper._sm_scale == self.scale
prefill_wrapper.run(
prefill_query,
kv_cache_permute,
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
out=output[num_decode_tokens:],
)
if decode_wrapper := attn_metadata.decode_wrapper:
if not attn_metadata.prefill_use_trtllm:
assert prefill_wrapper._causal
assert prefill_wrapper._window_left == window_left
assert prefill_wrapper._logits_soft_cap == (
self.logits_soft_cap or 0.0)
assert prefill_wrapper._sm_scale == self.scale
prefill_wrapper.run(
prefill_query,
kv_cache_permute,
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
out=output[num_decode_tokens:],
)
else:
# prefill_query may be non-contiguous
prefill_query = prefill_query.contiguous()
workspace_buffer = prefill_wrapper._float_workspace_buffer
block_tables_prefill = attn_metadata.block_table_tensor[
num_decode_tokens:]
seq_lens_prefill = attn_metadata.seq_lens[num_decode_tokens:]
# This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
assert get_kv_cache_layout() == "HND"
assert prefill_query.is_contiguous()
assert kv_cache_permute.is_contiguous()
assert workspace_buffer.is_contiguous()
assert block_tables_prefill.is_contiguous()
assert seq_lens_prefill.is_contiguous()
trtllm_batch_context_with_kv_cache(
query=prefill_query,
kv_cache=kv_cache_permute,
workspace_buffer=workspace_buffer,
block_tables=block_tables_prefill,
seq_lens=seq_lens_prefill,
max_q_len=attn_metadata.max_q_len,
max_kv_len=attn_metadata.max_seq_len,
bmm1_scale=layer._k_scale_float * self.scale,
bmm2_scale=layer._v_scale_float,
batch_size=attn_metadata.num_prefills,
cum_seq_lens_q=attn_metadata.qo_indptr_gpu,
cum_seq_lens_kv=attn_metadata.paged_kv_indptr_gpu,
out=output[num_decode_tokens:],
)
if num_decode_tokens > 0:
decode_wrapper = attn_metadata.decode_wrapper
decode_query = query[:num_decode_tokens]
assert decode_query.shape[0] == num_decode_tokens
assert decode_wrapper is not None
if not use_trtllm_decode_attention(
attn_metadata.num_decodes, attn_metadata.max_seq_len,
self.kv_cache_dtype, attn_metadata.num_qo_heads,
attn_metadata.num_kv_heads, attn_metadata.head_dim):
if not attn_metadata.decode_use_trtllm:
assert decode_wrapper._window_left == window_left
assert decode_wrapper._logits_soft_cap == (self.logits_soft_cap
or 0.0)
@ -734,34 +801,32 @@ class FlashInferImpl(AttentionImpl):
out=output[:num_decode_tokens],
)
else:
# decode_query may be non-contiguous
decode_query = decode_query.contiguous()
workspace_buffer = decode_wrapper._float_workspace_buffer
block_tables_decode = attn_metadata.block_table_tensor[:
num_decode_tokens]
seq_lens_decode = attn_metadata.seq_lens[:num_decode_tokens]
# This path needs to be enabled with VLLM_KV_CACHE_LAYOUT = HND
if num_decode_tokens > 0:
# decode_query may be non-contiguous
decode_query = decode_query.contiguous()
block_tables_decode = attn_metadata.block_table_tensor[:
num_decode_tokens]
seq_lens_decode = attn_metadata.seq_lens[:
num_decode_tokens]
workspace_buffer = decode_wrapper._float_workspace_buffer
assert get_kv_cache_layout() == "HND"
assert decode_query.is_contiguous()
assert kv_cache_permute.is_contiguous()
assert workspace_buffer.is_contiguous()
assert block_tables_decode.is_contiguous()
assert seq_lens_decode.is_contiguous()
assert get_kv_cache_layout() == "HND"
assert decode_query.is_contiguous()
assert kv_cache_permute.is_contiguous()
assert block_tables_decode.is_contiguous()
assert seq_lens_decode.is_contiguous()
assert workspace_buffer.is_contiguous()
trtllm_batch_decode_with_kv_cache(
query=decode_query,
kv_cache=kv_cache_permute,
workspace_buffer=workspace_buffer,
block_tables=block_tables_decode,
seq_lens=seq_lens_decode,
max_seq_len=attn_metadata.max_seq_len,
bmm1_scale=layer._k_scale_float * self.scale,
bmm2_scale=layer._v_scale_float,
out=output[:num_decode_tokens],
)
trtllm_batch_decode_with_kv_cache(
query=decode_query,
kv_cache=kv_cache_permute,
workspace_buffer=workspace_buffer,
block_tables=block_tables_decode,
seq_lens=seq_lens_decode,
max_seq_len=attn_metadata.max_seq_len,
bmm1_scale=layer._k_scale_float * self.scale,
bmm2_scale=layer._v_scale_float,
out=output[:num_decode_tokens],
)
return output_padded
@ -786,8 +851,8 @@ def fast_plan_decode(
non_blocking: bool = True,
) -> None:
"""
A faster version of BatchDecodeWithPagedKVCacheWrapper::plan used for
cudagraph capture/replay, while the no cudagraph version turns back
A faster version of BatchDecodeWithPagedKVCacheWrapper::plan used for
cudagraph capture/replay, while the no cudagraph version turns back
to the original plan.
using original plan after passing host-side buffers:
- only host-to-device copy of indptr and last_page_len buffers