mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 18:25:48 +08:00
[Model] Support deepseek with eagle (#21086)
Signed-off-by: Xin Yang <xyangx@amazon.com>
This commit is contained in:
parent
3aa8c10038
commit
83e69a09d6
@ -530,6 +530,9 @@ _SPECULATIVE_DECODING_EXAMPLE_MODELS = {
|
||||
"DeepSeekMTPModel": _HfExamplesInfo("luccafong/deepseek_mtp_main_random",
|
||||
speculative_model="luccafong/deepseek_mtp_draft_random", # noqa: E501
|
||||
trust_remote_code=True),
|
||||
"EagleDeepSeekMTPModel": _HfExamplesInfo("eagle618/deepseek-v3-random",
|
||||
speculative_model="eagle618/eagle-deepseek-v3-random", # noqa: E501
|
||||
trust_remote_code=True),
|
||||
"EagleLlamaForCausalLM": _HfExamplesInfo("yuhuili/EAGLE-LLaMA3-Instruct-8B",
|
||||
trust_remote_code=True,
|
||||
speculative_model="yuhuili/EAGLE-LLaMA3-Instruct-8B",
|
||||
|
||||
@ -144,6 +144,8 @@ def test_ngram_correctness(
|
||||
"morgendave/EAGLE-Llama-4-Scout-17B-16E-Instruct", 4),
|
||||
True,
|
||||
marks=pytest.mark.skip(reason="Skipping due to CI OOM issues")),
|
||||
(("eagle", "eagle618/deepseek-v3-random",
|
||||
"eagle618/eagle-deepseek-v3-random", 1), False),
|
||||
],
|
||||
ids=[
|
||||
# TODO: Re-enable this once tests/models/test_initialization.py is fixed, see PR #22333 #22611 # noqa: E501
|
||||
@ -151,7 +153,8 @@ def test_ngram_correctness(
|
||||
"llama3_eagle",
|
||||
"llama3_eagle3",
|
||||
"llama4_eagle",
|
||||
"llama4_eagle_mm"
|
||||
"llama4_eagle_mm",
|
||||
"deepseek_eagle"
|
||||
])
|
||||
@pytest.mark.parametrize("attn_backend",
|
||||
get_attn_backend_list_based_on_platform())
|
||||
@ -177,6 +180,7 @@ def test_eagle_correctness(
|
||||
'''
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
m.setenv("VLLM_MLA_DISABLE", "1")
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
|
||||
|
||||
if (attn_backend == "TRITON_ATTN_VLLM_V1"
|
||||
|
||||
246
vllm/model_executor/models/deepseek_eagle.py
Normal file
246
vllm/model_executor/models/deepseek_eagle.py
Normal file
@ -0,0 +1,246 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.distributed.parallel_state import get_pp_group
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.models.deepseek_v2 import (DeepseekV2DecoderLayer,
|
||||
DeepseekV3ForCausalLM)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
|
||||
from .utils import AutoWeightsLoader, maybe_prefix
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class DeepseekV2Model(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str = "",
|
||||
start_layer_id: int = 0,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = vllm_config. \
|
||||
speculative_config.draft_model_config.hf_config
|
||||
model_config = vllm_config.model_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.vocab_size = self.config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.config.vocab_size,
|
||||
self.config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
DeepseekV2DecoderLayer(
|
||||
self.config,
|
||||
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
|
||||
model_config=model_config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
) for i in range(self.config.num_hidden_layers)
|
||||
])
|
||||
|
||||
self.fc = nn.Linear(
|
||||
self.config.model.hidden_size * 2,
|
||||
self.config.model.hidden_size,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.enorm = RMSNorm(self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps)
|
||||
self.hnorm = RMSNorm(self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps)
|
||||
self.norm = RMSNorm(self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
input_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
inputs = torch.cat(
|
||||
[self.enorm(input_embeds),
|
||||
self.hnorm(hidden_states)], dim=-1)
|
||||
hidden_states = self.fc(inputs)
|
||||
residual = None
|
||||
for layer in self.layers:
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states, hidden_states
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
("fused_qkv_a_proj", "q_a_proj", 0),
|
||||
("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
|
||||
]
|
||||
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="gate_proj",
|
||||
ckpt_down_proj_name="down_proj",
|
||||
ckpt_up_proj_name="up_proj",
|
||||
num_experts=self.config.n_routed_experts)
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
# Skip non-stacked layers and experts (experts handled below).
|
||||
if weight_name not in name:
|
||||
continue
|
||||
# We have mlp.experts[0].gate_proj in the checkpoint.
|
||||
# Since we handle the experts below in expert_params_mapping,
|
||||
# we need to skip here BEFORE we update the name, otherwise
|
||||
# name will be updated to mlp.experts[0].gate_up_proj, which
|
||||
# will then be updated below in expert_params_mapping
|
||||
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
||||
if ("mlp.experts." in name) and name not in params_dict:
|
||||
continue
|
||||
name_mapped = name.replace(weight_name, param_name)
|
||||
|
||||
# QKV fusion is optional, fall back to normal
|
||||
# weight loading if it's not enabled
|
||||
# if go with fusion option, then update name
|
||||
if ((param_name == "fused_qkv_a_proj")
|
||||
and name_mapped not in params_dict):
|
||||
continue
|
||||
else:
|
||||
name = name_mapped
|
||||
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(
|
||||
param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id,
|
||||
)
|
||||
break
|
||||
else:
|
||||
# if PP disabled then draft will share embed with target
|
||||
if get_pp_group().world_size == 1 and \
|
||||
"embed_tokens." in name:
|
||||
continue
|
||||
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
|
||||
|
||||
class EagleDeepseekV3ForCausalLM(DeepseekV3ForCausalLM):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
self.config = vllm_config. \
|
||||
speculative_config.draft_model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
target_layer_num = vllm_config.model_config.get_num_layers(
|
||||
vllm_config.parallel_config)
|
||||
self.model = DeepseekV2Model(vllm_config=vllm_config,
|
||||
prefix="model",
|
||||
start_layer_id=target_layer_num)
|
||||
|
||||
self.lm_head = ParallelLMHead(self.config.vocab_size,
|
||||
self.config.hidden_size,
|
||||
quant_config=quant_config)
|
||||
|
||||
logit_scale = getattr(self.config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(self.config.vocab_size,
|
||||
scale=logit_scale)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
if inputs_embeds is not None:
|
||||
raise NotImplementedError(
|
||||
f"{type(self).__name__} does not support multimodal inputs yet."
|
||||
)
|
||||
return self.model(input_ids, positions, hidden_states)
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
loader = AutoWeightsLoader(
|
||||
self,
|
||||
skip_prefixes=None,
|
||||
)
|
||||
|
||||
model_weights = {}
|
||||
for name, loaded_weight in weights:
|
||||
if "lm_head" not in name:
|
||||
name = "model." + name
|
||||
model_weights[name] = loaded_weight
|
||||
loader.load_weights(model_weights.items())
|
||||
@ -264,6 +264,7 @@ _SPECULATIVE_DECODING_MODELS = {
|
||||
"Eagle3LlamaForCausalLM": ("llama_eagle3", "Eagle3LlamaForCausalLM"),
|
||||
# TODO: Re-enable this once tests/models/test_initialization.py is fixed, see PR #22333 #22611 # noqa: E501
|
||||
# "LlamaForCausalLMEagle3": ("llama_eagle3", "Eagle3LlamaForCausalLM"),
|
||||
"EagleDeepSeekMTPModel": ("deepseek_eagle", "EagleDeepseekV3ForCausalLM"),
|
||||
"DeepSeekMTPModel": ("deepseek_mtp", "DeepSeekMTP"),
|
||||
"Glm4MoeMTPModel": ("glm4_moe_mtp", "Glm4MoeMTP"),
|
||||
"MedusaModel": ("medusa", "Medusa"),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user