[Platforms] Refactor openvino code (#10573)

Signed-off-by: statelesshz <hzji210@gmail.com>
This commit is contained in:
JiHuazhong 2024-11-23 14:23:12 +08:00 committed by GitHub
parent 4cfe5d2bca
commit 86a44fb896
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 72 additions and 78 deletions

View File

@ -1,19 +1,16 @@
from typing import List, Set, Tuple from typing import List, Set, Tuple
import openvino as ov import openvino as ov
import openvino.properties.hint as hints
import torch
import vllm.envs as envs import vllm.envs as envs
from vllm.config import CacheConfig, ModelConfig
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
from vllm.logger import init_logger from vllm.logger import init_logger
from vllm.lora.request import LoRARequest from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.sampler import SamplerOutput from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.platforms import current_platform from vllm.platforms import current_platform
from vllm.sequence import ExecuteModelRequest from vllm.sequence import ExecuteModelRequest
from vllm.utils import (GiB_bytes, get_distributed_init_method, get_ip, from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
get_open_port, make_async) make_async)
from vllm.worker.worker_base import WorkerWrapperBase from vllm.worker.worker_base import WorkerWrapperBase
logger = init_logger(__name__) logger = init_logger(__name__)
@ -30,11 +27,6 @@ class OpenVINOExecutor(ExecutorBase):
current_platform.is_openvino_gpu(), \ current_platform.is_openvino_gpu(), \
"OpenVINO backend supports only CPU and GPU devices" "OpenVINO backend supports only CPU and GPU devices"
self.ov_core = ov.Core()
self.model_config = _verify_and_get_model_config(self.model_config)
self.cache_config = _verify_and_get_cache_config(
self.ov_core, self.cache_config)
# Instantiate the worker and load the model to CPU. # Instantiate the worker and load the model to CPU.
self._init_worker() self._init_worker()
@ -45,7 +37,7 @@ class OpenVINOExecutor(ExecutorBase):
distributed_init_method = get_distributed_init_method( distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port()) get_ip(), get_open_port())
self.driver_worker = wrapper.init_worker( self.driver_worker = wrapper.init_worker(
ov_core=self.ov_core, ov_core=ov.Core(),
vllm_config=self.vllm_config, vllm_config=self.vllm_config,
local_rank=0, local_rank=0,
rank=0, rank=0,
@ -130,70 +122,3 @@ class OpenVINOExecutorAsync(OpenVINOExecutor, ExecutorAsyncBase):
# OpenVINOExecutor will always be healthy as long as # OpenVINOExecutor will always be healthy as long as
# it's running. # it's running.
return return
def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
if config.dtype != torch.float32:
logger.warning(
f"Only float32 dtype is supported on OpenVINO, casting from {config.dtype}." # noqa: G004, E501
)
config.dtype = torch.float32
if not config.enforce_eager:
logger.warning(
"CUDA graph is not supported on OpenVINO backend, fallback to the "
"eager mode.")
config.enforce_eager = True
return config
def _verify_and_get_cache_config(ov_core: ov.Core,
config: CacheConfig) -> CacheConfig:
if envs.VLLM_OPENVINO_CPU_KV_CACHE_PRECISION == "u8":
if not current_platform.is_openvino_cpu():
logger.info("VLLM_OPENVINO_CPU_KV_CACHE_PRECISION is"
"ignored for GPU, f16 data type will be used.")
config.cache_dtype = ov.Type.f16
else:
logger.info("KV cache type is overridden to u8 via "
"VLLM_OPENVINO_CPU_KV_CACHE_PRECISION env var.")
config.cache_dtype = ov.Type.u8
else:
if current_platform.is_openvino_cpu():
ov_device = envs.VLLM_OPENVINO_DEVICE
inference_precision = ov_core.get_property(
ov_device, hints.inference_precision)
if inference_precision == ov.Type.bf16:
config.cache_dtype = ov.Type.bf16
else:
config.cache_dtype = ov.Type.f16
else:
config.cache_dtype = ov.Type.f16
if current_platform.is_openvino_cpu():
if config.block_size != 32:
logger.info(
f"OpenVINO CPU optimal block size is 32, overriding currently set {config.block_size}" # noqa: G004, E501
)
config.block_size = 32
else:
if config.block_size != 16:
logger.info(
f"OpenVINO GPU optimal block size is 16, overriding currently set {config.block_size}" # noqa: G004, E501
)
config.block_size = 16
kv_cache_space = envs.VLLM_OPENVINO_KVCACHE_SPACE
if kv_cache_space >= 0:
if kv_cache_space == 0 and current_platform.is_openvino_cpu():
config.openvino_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning(
"Environment variable VLLM_OPENVINO_KVCACHE_SPACE (GB) "
"for OpenVINO backend is not set, using 4 by default.")
else:
config.openvino_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore
else:
raise RuntimeError(
"Invalid environment variable VLLM_OPENVINO_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")
return config

View File

@ -1,5 +1,7 @@
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
import openvino as ov
import openvino.properties.hint as hints
import torch import torch
import vllm.envs as envs import vllm.envs as envs
@ -49,6 +51,8 @@ class OpenVinoPlatform(Platform):
@classmethod @classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None: def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
from vllm.utils import GiB_bytes
parallel_config = vllm_config.parallel_config parallel_config = vllm_config.parallel_config
assert ( assert (
parallel_config.world_size == 1 parallel_config.world_size == 1
@ -57,3 +61,68 @@ class OpenVinoPlatform(Platform):
if parallel_config.worker_cls == "auto": if parallel_config.worker_cls == "auto":
parallel_config.worker_cls = \ parallel_config.worker_cls = \
"vllm.worker.openvino_worker.OpenVINOWorker" "vllm.worker.openvino_worker.OpenVINOWorker"
# check and update model config
model_config = vllm_config.model_config
if model_config.dtype != torch.float32:
logger.warning(
f"Only float32 dtype is supported on OpenVINO, casting from {model_config.dtype}." # noqa: G004, E501
)
model_config.dtype = torch.float32
if not model_config.enforce_eager:
logger.warning(
"CUDA graph is not supported on OpenVINO backend, fallback to "
"the eager mode.")
model_config.enforce_eager = True
# check and update cache config
ov_core = ov.Core()
cache_config = vllm_config.cache_config
if envs.VLLM_OPENVINO_CPU_KV_CACHE_PRECISION == "u8":
if not OpenVinoPlatform.is_openvino_cpu():
logger.info("VLLM_OPENVINO_CPU_KV_CACHE_PRECISION is"
"ignored for GPU, f16 data type will be used.")
cache_config.cache_dtype = ov.Type.f16
else:
logger.info("KV cache type is overridden to u8 via "
"VLLM_OPENVINO_CPU_KV_CACHE_PRECISION env var.")
cache_config.cache_dtype = ov.Type.u8
else:
if OpenVinoPlatform.is_openvino_cpu():
ov_device = envs.VLLM_OPENVINO_DEVICE
inference_precision = ov_core.get_property(
ov_device, hints.inference_precision)
if inference_precision == ov.Type.bf16:
cache_config.cache_dtype = ov.Type.bf16
else:
cache_config.cache_dtype = ov.Type.f16
else:
cache_config.cache_dtype = ov.Type.f16
if OpenVinoPlatform.is_openvino_cpu():
if cache_config.block_size != 32:
logger.info(
f"OpenVINO CPU optimal block size is 32, overriding currently set {cache_config.block_size}" # noqa: G004, E501
)
cache_config.block_size = 32
else:
if cache_config.block_size != 16:
logger.info(
f"OpenVINO GPU optimal block size is 16, overriding currently set {cache_config.block_size}" # noqa: G004, E501
)
cache_config.block_size = 16
kv_cache_space = envs.VLLM_OPENVINO_KVCACHE_SPACE
if kv_cache_space >= 0:
if kv_cache_space == 0 and OpenVinoPlatform.is_openvino_cpu():
cache_config.openvino_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning(
"Environment variable VLLM_OPENVINO_KVCACHE_SPACE (GB) "
"for OpenVINO backend is not set, using 4 by default.")
else:
cache_config.openvino_kvcache_space_bytes = ( # type: ignore
kv_cache_space * GiB_bytes)
else:
raise RuntimeError(
"Invalid environment variable VLLM_OPENVINO_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")