mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 00:06:06 +08:00
[Misc] Support FP8 MoE for compressed-tensors (#8588)
This commit is contained in:
parent
64840dfae4
commit
873edda6cf
@ -1,4 +1,5 @@
|
||||
compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-quantized, main
|
||||
compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-channel-quantized, main
|
||||
compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W8A16-quantized, main
|
||||
compressed-tensors, mgoin/DeepSeek-Coder-V2-Lite-Instruct-FP8, main
|
||||
gptq_marlin, TheBloke/Mixtral-8x7B-v0.1-GPTQ, main
|
||||
|
||||
@ -323,10 +323,12 @@ class FusedMoE(torch.nn.Module):
|
||||
loaded_weight: torch.Tensor, weight_name: str,
|
||||
shard_id: str, expert_id: int) -> None:
|
||||
|
||||
# compressed-tensors represents weights on disk which are flipped
|
||||
# compressed-tensors checkpoints with packed weights are stored flipped
|
||||
# TODO (mgoin): check self.quant_method.quant_config.quant_format
|
||||
# against known CompressionFormat enum values that have this quality
|
||||
loaded_weight = loaded_weight.t().contiguous() if (
|
||||
self.quant_method.__class__.__name__
|
||||
== "CompressedTensorsMoEMethod") else loaded_weight
|
||||
== "CompressedTensorsWNA16MoEMethod") else loaded_weight
|
||||
|
||||
if shard_id not in ("w1", "w2", "w3"):
|
||||
raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
|
||||
@ -353,6 +355,9 @@ class FusedMoE(torch.nn.Module):
|
||||
|
||||
# Case input scale: input_scale loading is only supported for fp8
|
||||
if "input_scale" in weight_name:
|
||||
# this is needed for compressed-tensors only
|
||||
loaded_weight = loaded_weight.to(param.data.device)
|
||||
|
||||
if param.data[expert_id] != 1 and (param.data[expert_id] -
|
||||
loaded_weight).abs() > 1e-5:
|
||||
raise ValueError(
|
||||
|
||||
@ -73,7 +73,7 @@ class CompressedTensorsConfig(QuantizationConfig):
|
||||
if isinstance(layer, Attention):
|
||||
return CompressedTensorsKVCacheMethod(self)
|
||||
if isinstance(layer, FusedMoE):
|
||||
return CompressedTensorsMoEMethod(self)
|
||||
return CompressedTensorsMoEMethod.get_moe_method(self)
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -5,12 +5,16 @@ from typing import Callable, List, Optional
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE, FusedMoEMethodBase
|
||||
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
|
||||
FusedMoeWeightScaleSupported)
|
||||
from vllm.model_executor.layers.quantization.compressed_tensors.schemes import (
|
||||
WNA16_SUPPORTED_BITS)
|
||||
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
|
||||
CompressionFormat)
|
||||
CompressionFormat, QuantizationStrategy)
|
||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
all_close_1d, normalize_e4m3fn_to_e4m3fnuz, per_tensor_dequantize)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.utils import is_hip, print_warning_once
|
||||
|
||||
|
||||
class GPTQMarlinState(Enum):
|
||||
@ -18,11 +22,219 @@ class GPTQMarlinState(Enum):
|
||||
READY = enum.auto()
|
||||
|
||||
|
||||
__all__ = ["CompressedTensorsMoEMethod"]
|
||||
__all__ = [
|
||||
"CompressedTensorsMoEMethod", "CompressedTensorsW8A8Fp8MoEMethod",
|
||||
"CompressedTensorsWNA16MoEMethod"
|
||||
]
|
||||
|
||||
|
||||
class CompressedTensorsMoEMethod(FusedMoEMethodBase):
|
||||
|
||||
@staticmethod
|
||||
def get_moe_method(
|
||||
quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
|
||||
) -> "CompressedTensorsMoEMethod":
|
||||
# TODO: @dsikka: refactor this to use schemes as other kernels
|
||||
# are supported + check if the layer is being ignored.
|
||||
weight_quant = quant_config.target_scheme_map["Linear"].get("weights")
|
||||
input_quant = quant_config.target_scheme_map["Linear"].get(
|
||||
"input_activations")
|
||||
|
||||
if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
|
||||
return CompressedTensorsWNA16MoEMethod(quant_config)
|
||||
elif quant_config._is_fp8_w8a8(weight_quant, input_quant):
|
||||
return CompressedTensorsW8A8Fp8MoEMethod(quant_config)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}")
|
||||
|
||||
|
||||
class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
|
||||
):
|
||||
self.quant_config = quant_config
|
||||
self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
|
||||
"weights")
|
||||
self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
|
||||
"input_activations")
|
||||
|
||||
if not (self.weight_quant.strategy == QuantizationStrategy.TENSOR
|
||||
and self.input_quant.strategy == QuantizationStrategy.TENSOR):
|
||||
raise ValueError(
|
||||
"For FP8 Fused MoE layers, only per-tensor scales"
|
||||
"for weights and activations are supported. Found "
|
||||
f"{self.weight_quant}, {self.input_quant}")
|
||||
|
||||
self.static_input_scales = not self.input_quant.dynamic
|
||||
|
||||
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
||||
hidden_size: int, intermediate_size: int,
|
||||
params_dtype: torch.dtype, **extra_weight_attrs):
|
||||
|
||||
params_dtype = torch.float8_e4m3fn
|
||||
|
||||
# WEIGHTS
|
||||
w13_weight = torch.nn.Parameter(torch.empty(num_experts,
|
||||
2 * intermediate_size,
|
||||
hidden_size,
|
||||
dtype=params_dtype),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("w13_weight", w13_weight)
|
||||
set_weight_attrs(w13_weight, extra_weight_attrs)
|
||||
|
||||
w2_weight = torch.nn.Parameter(torch.empty(num_experts,
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
dtype=params_dtype),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("w2_weight", w2_weight)
|
||||
set_weight_attrs(w2_weight, extra_weight_attrs)
|
||||
|
||||
# WEIGHT_SCALES
|
||||
# Allocate 2 scales for w1 and w3 respectively.
|
||||
# They will be combined to a single scale after weight loading.
|
||||
w13_weight_scale = torch.nn.Parameter(torch.ones(num_experts,
|
||||
2,
|
||||
dtype=torch.float32),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("w13_weight_scale", w13_weight_scale)
|
||||
|
||||
w2_weight_scale = torch.nn.Parameter(torch.ones(num_experts,
|
||||
dtype=torch.float32),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("w2_weight_scale", w2_weight_scale)
|
||||
# Add the quantization method used (per tensor/grouped/channel)
|
||||
# to ensure the weight scales are loaded in properly
|
||||
extra_weight_attrs.update(
|
||||
{"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
|
||||
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
|
||||
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
|
||||
|
||||
# INPUT_SCALES
|
||||
if self.static_input_scales:
|
||||
w13_input_scale = torch.nn.Parameter(torch.ones(
|
||||
num_experts, dtype=torch.float32),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("w13_input_scale", w13_input_scale)
|
||||
set_weight_attrs(w13_input_scale, extra_weight_attrs)
|
||||
|
||||
w2_input_scale = torch.nn.Parameter(torch.ones(
|
||||
num_experts, dtype=torch.float32),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("w2_input_scale", w2_input_scale)
|
||||
set_weight_attrs(w2_input_scale, extra_weight_attrs)
|
||||
else:
|
||||
layer.w13_input_scale = None
|
||||
layer.w2_input_scale = None
|
||||
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
||||
# Fp8 moe kernels require a single activation scale.
|
||||
# We take the max of all the scales in case they differ.
|
||||
if self.static_input_scales:
|
||||
if (layer.w13_input_scale is None or layer.w2_input_scale is None):
|
||||
raise ValueError(
|
||||
"QuantConfig has static quantization, but found "
|
||||
"activation scales are None.")
|
||||
if (not all_close_1d(layer.w13_input_scale)
|
||||
or not all_close_1d(layer.w2_input_scale)):
|
||||
print_warning_once(
|
||||
"Found input_scales that are not equal for "
|
||||
"fp8 MoE layer. Using the maximum across experts "
|
||||
"for each layer. ")
|
||||
layer.w13_input_scale = torch.nn.Parameter(
|
||||
layer.w13_input_scale.max(), requires_grad=False)
|
||||
layer.w2_input_scale = torch.nn.Parameter(
|
||||
layer.w2_input_scale.max(), requires_grad=False)
|
||||
|
||||
# If rocm, normalize the weights and scales to e4m3fnuz
|
||||
if is_hip():
|
||||
# Normalize the weights and scales
|
||||
w13_weight, w13_weight_scale, w13_input_scale = \
|
||||
normalize_e4m3fn_to_e4m3fnuz(
|
||||
layer.w13_weight, layer.w13_weight_scale,
|
||||
layer.w13_input_scale)
|
||||
w2_weight, w2_weight_scale, w2_input_scale = \
|
||||
normalize_e4m3fn_to_e4m3fnuz(
|
||||
layer.w2_weight, layer.w2_weight_scale,
|
||||
layer.w2_input_scale)
|
||||
# Reset the parameter
|
||||
layer.w13_weight = torch.nn.Parameter(w13_weight,
|
||||
requires_grad=False)
|
||||
layer.w13_weight_scale = torch.nn.Parameter(w13_weight_scale,
|
||||
requires_grad=False)
|
||||
if w13_input_scale is not None:
|
||||
layer.w13_input_scale = torch.nn.Parameter(w13_input_scale,
|
||||
requires_grad=False)
|
||||
layer.w2_weight = torch.nn.Parameter(w2_weight,
|
||||
requires_grad=False)
|
||||
layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
|
||||
requires_grad=False)
|
||||
if w2_input_scale is not None:
|
||||
layer.w2_input_scale = torch.nn.Parameter(w2_input_scale,
|
||||
requires_grad=False)
|
||||
|
||||
# Fp8 moe kernel needs single weight scale for w13 per expert.
|
||||
# We take the max then dequant and requant each expert.
|
||||
assert layer.w13_weight_scale is not None
|
||||
shard_size = layer.intermediate_size_per_partition
|
||||
max_w13_scales = layer.w13_weight_scale.max(dim=1).values
|
||||
for expert_id in range(layer.num_experts):
|
||||
start = 0
|
||||
for shard_id in range(2):
|
||||
dq_weight = per_tensor_dequantize(
|
||||
layer.w13_weight[expert_id][start:start + shard_size, :],
|
||||
layer.w13_weight_scale[expert_id][shard_id])
|
||||
layer.w13_weight[expert_id][
|
||||
start:start + shard_size, :], _ = ops.scaled_fp8_quant(
|
||||
dq_weight, max_w13_scales[expert_id])
|
||||
start += shard_size
|
||||
|
||||
layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
|
||||
requires_grad=False)
|
||||
|
||||
def apply(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
router_logits: torch.Tensor,
|
||||
top_k: int,
|
||||
renormalize: bool = True,
|
||||
use_grouped_topk: bool = False,
|
||||
num_expert_group: Optional[int] = None,
|
||||
topk_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts
|
||||
|
||||
topk_weights, topk_ids = FusedMoE.select_experts(
|
||||
hidden_states=x,
|
||||
router_logits=router_logits,
|
||||
use_grouped_topk=use_grouped_topk,
|
||||
top_k=top_k,
|
||||
renormalize=renormalize,
|
||||
topk_group=topk_group,
|
||||
num_expert_group=num_expert_group,
|
||||
custom_routing_function=custom_routing_function)
|
||||
|
||||
return fused_experts(x,
|
||||
layer.w13_weight,
|
||||
layer.w2_weight,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
inplace=True,
|
||||
use_fp8_w8a8=True,
|
||||
w1_scale=layer.w13_weight_scale,
|
||||
w2_scale=layer.w2_weight_scale,
|
||||
a1_scale=layer.w13_input_scale,
|
||||
a2_scale=layer.w2_input_scale)
|
||||
|
||||
|
||||
class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501
|
||||
|
||||
@ -321,13 +321,13 @@ class PhiMoEAttention(nn.Module):
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=True,
|
||||
quant_config=None,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=True,
|
||||
quant_config=None,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user