[Hardware][Intel] Isolate CPUModelRunner and ModelRunner for better maintenance (#3824)

This commit is contained in:
bigPYJ1151 2024-04-12 02:56:49 +08:00 committed by GitHub
parent 08ccee1e83
commit 8afca50889
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 443 additions and 61 deletions

View File

@ -50,20 +50,15 @@ class TorchSDPABackend(AttentionBackend):
@dataclass
class TorchSDPAMetadata(AttentionMetadataPerStage, PagedAttentionMetadata):
class TorchSDPAMetadata(AttentionMetadata, PagedAttentionMetadata,
AttentionMetadataPerStage):
"""Metadata for TorchSDPABackend.
"""
# Currently, input sequences can only contain all prompts
# or all decoding. True if all sequences are prompts.
is_prompt: bool
slot_mapping: torch.Tensor
prompt_lens: Optional[List[int]]
prompt_lens_tensor: Optional[torch.Tensor]
max_subquery_len: Optional[int] = None
max_prompt_len: Optional[int] = None
subquery_start_loc: Optional[torch.Tensor] = None
seq_start_loc: Optional[torch.Tensor] = None
use_cuda_graph: bool = False
def __post_init__(self):
# Set during the execution of the first attention op.
@ -111,7 +106,7 @@ class TorchSDPABackendImpl(AttentionImpl):
key: torch.Tensor,
value: torch.Tensor,
kv_cache: Optional[torch.Tensor],
attn_metadata: AttentionMetadata[TorchSDPAMetadata],
attn_metadata: TorchSDPAMetadata,
kv_scale: float,
) -> torch.Tensor:
"""Forward pass with torch SDPA and PagedAttention.
@ -140,51 +135,36 @@ class TorchSDPABackendImpl(AttentionImpl):
attn_metadata.kv_cache_dtype,
kv_scale)
num_prefill_tokens = attn_metadata.num_prefill_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
output = torch.empty_like(query)
# Query for decode. KV is not needed because it is already cached.
decode_query = query[num_prefill_tokens:]
# QKV for prefill.
query = query[:num_prefill_tokens]
key = key[:num_prefill_tokens]
value = value[:num_prefill_tokens]
assert query.shape[0] == num_prefill_tokens
assert decode_query.shape[0] == num_decode_tokens
if prefill_meta := attn_metadata.prefill_metadata:
if (kv_cache is None or prefill_meta.block_tables.numel() == 0):
if attn_metadata.is_prompt:
if (kv_cache is None or attn_metadata.block_tables.numel() == 0):
if self.num_kv_heads != self.num_heads:
key = key.repeat_interleave(self.num_queries_per_kv, dim=1)
value = value.repeat_interleave(self.num_queries_per_kv,
dim=1)
if prefill_meta.attn_bias is None:
if attn_metadata.attn_bias is None:
if self.alibi_slopes is not None:
att_masks = _make_alibi_bias(
self.alibi_slopes, query.dtype,
prefill_meta.prompt_lens) # type: ignore
attn_metadata.prompt_lens) # type: ignore
elif self.sliding_window is not None:
att_masks = _make_sliding_window_bias(
prefill_meta.prompt_lens, self.sliding_window,
attn_metadata.prompt_lens, self.sliding_window,
query.dtype) # type: ignore
else:
att_masks = [None] * len(prefill_meta.prompt_lens)
prefill_meta.attn_bias = att_masks
att_masks = [None] * len(attn_metadata.prompt_lens)
attn_metadata.attn_bias = att_masks
query = query.movedim(0, query.dim() - 2)
key = key.movedim(0, key.dim() - 2)
value = value.movedim(0, value.dim() - 2)
start = 0
out = torch.empty((num_tokens, self.num_heads, self.head_size),
output = torch.empty(
(num_tokens, self.num_heads, self.head_size),
dtype=query.dtype)
for prompt_len, mask in zip(prefill_meta.prompt_lens,
prefill_meta.attn_bias):
for prompt_len, mask in zip(attn_metadata.prompt_lens,
attn_metadata.attn_bias):
end = start + prompt_len
sub_out = scaled_dot_product_attention(
query[:, start:end, :],
@ -194,32 +174,28 @@ class TorchSDPABackendImpl(AttentionImpl):
dropout_p=0.0,
is_causal=not self.need_mask,
scale=self.scale).movedim(query.dim() - 2, 0)
out[start:end, :, :] = sub_out
output[start:end, :, :] = sub_out
start = end
assert out.shape == output[:num_prefill_tokens].shape
output[:num_prefill_tokens] = out
else:
# prefix-enabled attention
raise RuntimeError(
"Torch SDPA backend doesn't support prefix decoding.")
if decode_meta := attn_metadata.decode_metadata:
else:
# Decoding run.
out = PagedAttention.forward_decode(
decode_query,
output = PagedAttention.forward_decode(
query,
key_cache,
value_cache,
decode_meta.block_tables,
decode_meta.context_lens,
decode_meta.max_context_len,
attn_metadata.block_tables,
attn_metadata.context_lens,
attn_metadata.max_context_len,
attn_metadata.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
kv_scale,
)
assert out.shape == output[num_prefill_tokens:].shape
output[num_prefill_tokens:]
# Reshape the output tensor.
return output.view(-1, self.num_heads * self.head_size)
@ -241,7 +217,7 @@ def _make_alibi_bias(
bias = bias[None, :] - bias[:, None]
num_heads = alibi_slopes.shape[0]
bias = bias[None, :].expand(num_heads, prompt_len, prompt_len)
bias = bias[None, :].repeat((num_heads, 1, 1))
bias.mul_(alibi_slopes[:, None, None])
inf_mask = torch.empty(
(1, prompt_len, prompt_len),

View File

@ -25,6 +25,7 @@ class CPUExecutor(ExecutorBase):
assert lora_config is None, "cpu backend doesn't support LoRA"
model_config = _verify_and_get_model_config(model_config)
cache_config = _verify_and_get_cache_config(cache_config)
scheduler_config = _verify_and_get_scheduler_config(scheduler_config)
self.model_config = model_config
self.cache_config = cache_config
@ -116,6 +117,15 @@ def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
return config
def _verify_and_get_scheduler_config(
config: SchedulerConfig) -> SchedulerConfig:
if config.chunked_prefill_enabled:
logger.warning("Chunked prefill is not supported on CPU, disable it.")
config.chunked_prefill_enabled = False
return config
def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
_GB = 1 << 30
if config.enable_prefix_caching:

View File

@ -372,7 +372,6 @@ def is_pin_memory_available() -> bool:
print_warning_once("Pin memory is not supported on Neuron.")
return False
elif is_cpu():
print_warning_once("Pin memory is not supported on CPU.")
return False
return True

View File

@ -0,0 +1,408 @@
from typing import Dict, List, Optional, Tuple
import torch
from vllm.attention import AttentionMetadata, get_attn_backend
from vllm.config import (DeviceConfig, LoRAConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.distributed import broadcast_tensor_dict
from vllm.logger import init_logger
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.model_loader import get_model
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
from vllm.utils import make_tensor_with_pad, maybe_expand_dim
logger = init_logger(__name__)
_PAD_SLOT_ID = -1
class CPUModelRunner:
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
kv_cache_dtype: Optional[str] = "auto",
is_driver_worker: bool = False,
*args,
**kwargs,
):
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.lora_config = lora_config
self.is_driver_worker = is_driver_worker
# model_config can be None in tests/samplers/test_sampler.py.
# FIXME(woosuk): This is a hack to make the tests work. Refactor this.
self.sliding_window = (model_config.get_sliding_window()
if model_config is not None else None)
self.device_config = (device_config
if device_config is not None else DeviceConfig())
self.device = self.device_config.device
self.model = None
self.block_size = None # Set after initial profiling.
self.kv_cache_dtype = kv_cache_dtype
self.attn_backend = get_attn_backend(
self.model_config.dtype if model_config is not None else None)
def load_model(self) -> None:
self.model = get_model(self.model_config,
self.device_config,
lora_config=self.lora_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config)
def _prepare_prompt(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int]]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[int] = []
input_positions: List[int] = []
slot_mapping: List[int] = []
prompt_lens: List[int] = []
for seq_group_metadata in seq_group_metadata_list:
assert seq_group_metadata.is_prompt
seq_ids = list(seq_group_metadata.seq_data.keys())
assert len(seq_ids) == 1
seq_id = seq_ids[0]
seq_data = seq_group_metadata.seq_data[seq_id]
prompt_tokens = seq_data.get_token_ids()
computed_len = seq_data.get_num_computed_tokens()
prompt_len = len(prompt_tokens)
prompt_lens.append(prompt_len) # Prompt token num
input_tokens.extend(prompt_tokens) # Token ids
# Token position ids
# NOTE(woosuk): Here we assume that the first token in the prompt
# is always the first token in the sequence.
input_positions.extend(list(range(computed_len, prompt_len)))
# Compute the slot mapping.
block_table = seq_group_metadata.block_tables[seq_id]
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
# where start_idx is max(0, prompt_len - sliding_window).
# For example, if the prompt len is 10, sliding window is 8, and
# block size is 4, the first two tokens are masked and the slot
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
start_idx = 0
if self.sliding_window is not None:
start_idx = max(0, prompt_len - self.sliding_window)
for i in range(computed_len, prompt_len):
if i < start_idx:
slot_mapping.append(_PAD_SLOT_ID)
continue
block_number = block_table[i //
self.block_size] # type: ignore
block_offset = i % self.block_size # type: ignore
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
num_prompt_tokens = len(input_tokens)
input_tokens = torch.tensor(input_tokens,
dtype=torch.long,
device=self.device) # type: ignore
input_positions = torch.tensor(input_positions,
dtype=torch.long,
device=self.device) # type: ignore
slot_mapping = torch.tensor(slot_mapping,
dtype=torch.long,
device=self.device) # type: ignore
attn_metadata = self.attn_backend.make_metadata(
is_prompt=True,
prompt_lens=prompt_lens,
num_prefills=len(prompt_lens),
num_prefill_tokens=num_prompt_tokens,
num_decode_tokens=0,
prefill_metadata=None,
decode_metadata=None,
max_context_len=None,
context_lens=None,
block_tables=torch.tensor([]),
slot_mapping=slot_mapping,
kv_cache_dtype=self.kv_cache_dtype,
)
return (
input_tokens,
input_positions,
attn_metadata,
prompt_lens,
)
def _prepare_decode(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[int] = []
input_positions: List[int] = []
slot_mapping: List[int] = []
context_lens: List[int] = []
block_tables: List[List[int]] = []
for seq_group_metadata in seq_group_metadata_list:
assert not seq_group_metadata.is_prompt
assert seq_group_metadata.token_chunk_size == 1
seq_ids = list(seq_group_metadata.seq_data.keys())
for seq_id in seq_ids:
seq_data = seq_group_metadata.seq_data[seq_id]
generation_token = seq_data.get_last_token_id()
input_tokens.append(generation_token)
seq_len = seq_data.get_len()
position = seq_len - 1
input_positions.append(position)
context_len = seq_len if self.sliding_window is None else min(
seq_len, self.sliding_window)
context_lens.append(context_len)
block_table = seq_group_metadata.block_tables[seq_id]
block_number = block_table[position // self.block_size]
block_offset = position % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
if self.sliding_window is not None:
sliding_window_blocks = (self.sliding_window //
self.block_size)
block_table = block_table[-sliding_window_blocks:]
block_tables.append(block_table)
max_context_len = max(context_lens)
input_tokens = torch.tensor(input_tokens,
dtype=torch.long,
device=self.device)
input_positions = torch.tensor(input_positions,
dtype=torch.long,
device=self.device)
slot_mapping = torch.tensor(slot_mapping,
dtype=torch.long,
device=self.device)
context_lens = torch.tensor(context_lens,
dtype=torch.int,
device=self.device)
max_block_table_len = max(
len(block_table) for block_table in block_tables)
block_tables = make_tensor_with_pad(
block_tables,
max_len=max_block_table_len,
pad=0,
dtype=torch.int,
device=self.device,
)
attn_metadata = self.attn_backend.make_metadata(
is_prompt=False,
slot_mapping=slot_mapping,
prompt_lens=None,
num_prefill_tokens=0,
num_decode_tokens=len(input_tokens),
max_context_len=max_context_len,
num_prefills=0,
prefill_metadata=None,
decode_metadata=None,
context_lens=context_lens,
block_tables=block_tables,
kv_cache_dtype=self.kv_cache_dtype,
)
return (
input_tokens,
input_positions,
attn_metadata,
)
def _prepare_sample(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
prompt_lens: List[int],
) -> SamplingMetadata:
seq_groups: List[Tuple[List[int], SamplingParams]] = []
selected_token_indices: List[int] = []
generators: List[torch.Generator] = []
selected_token_start_idx = 0
categorized_sample_indices = {t: [] for t in SamplingType}
categorized_sample_indices_start_idx = 0
categorized_sampled_token_indices_start_idx = 0
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
seq_ids = list(seq_group_metadata.seq_data.keys())
sampling_params = seq_group_metadata.sampling_params
seq_groups.append((seq_ids, sampling_params))
if seq_group_metadata.is_prompt:
assert len(seq_ids) == 1
subquery_len = prompt_lens[i]
if sampling_params.prompt_logprobs is not None:
# NOTE: prompt token positions do not need sample, skip
categorized_sample_indices_start_idx += subquery_len - 1
categorized_sample_indices[
sampling_params.sampling_type].append([
categorized_sample_indices_start_idx,
categorized_sampled_token_indices_start_idx
])
categorized_sample_indices_start_idx += 1
categorized_sampled_token_indices_start_idx += 1
if sampling_params.prompt_logprobs is not None:
selected_token_indices.extend(
range(selected_token_start_idx,
selected_token_start_idx + subquery_len - 1))
selected_token_indices.append(selected_token_start_idx +
subquery_len - 1)
selected_token_start_idx += subquery_len
if sampling_params.seed is not None:
seq_group_metadata.state.generator = torch.Generator(
device=self.device).manual_seed(sampling_params.seed)
else:
num_seqs = len(seq_ids)
selected_token_indices.extend(
range(selected_token_start_idx,
selected_token_start_idx + num_seqs))
selected_token_start_idx += num_seqs
categorized_sample_indices[
sampling_params.sampling_type].extend(
zip(
range(
categorized_sample_indices_start_idx,
categorized_sample_indices_start_idx +
num_seqs),
range(
categorized_sampled_token_indices_start_idx,
categorized_sampled_token_indices_start_idx +
num_seqs)))
categorized_sample_indices_start_idx += num_seqs
categorized_sampled_token_indices_start_idx += num_seqs
if sampling_params.seed is not None:
generators.append(seq_group_metadata.state.generator)
selected_token_indices = torch.tensor(selected_token_indices,
dtype=torch.long)
categorized_sample_indices = {
t: maybe_expand_dim(torch.tensor(seq_ids, dtype=torch.int), 2, 2)
for t, seq_ids in categorized_sample_indices.items()
}
seq_data: Dict[int, SequenceData] = {}
for seq_group_metadata in seq_group_metadata_list:
seq_data.update(seq_group_metadata.seq_data)
sampling_metadata = SamplingMetadata(
seq_groups=seq_groups,
seq_data=seq_data,
prompt_lens=prompt_lens,
selected_token_indices=selected_token_indices,
categorized_sample_indices=categorized_sample_indices,
generators=generators,
)
return sampling_metadata
def prepare_input_tensors(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata,
SamplingMetadata]:
if self.is_driver_worker:
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
(input_tokens, input_positions, attn_metadata,
prompt_lens) = self._prepare_prompt(seq_group_metadata_list)
else:
(input_tokens, input_positions,
attn_metadata) = self._prepare_decode(seq_group_metadata_list)
prompt_lens = []
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
prompt_lens)
# Broadcast the metadata.
metadata_dict = {
"input_tokens": input_tokens,
"input_positions": input_positions,
"selected_token_indices":
sampling_metadata.selected_token_indices,
}
metadata_dict.update(attn_metadata.asdict_zerocopy())
broadcast_tensor_dict(metadata_dict, src=0)
else:
metadata_dict = broadcast_tensor_dict(src=0)
input_tokens = metadata_dict.pop("input_tokens")
input_positions = metadata_dict.pop("input_positions")
selected_token_indices = metadata_dict.pop(
"selected_token_indices")
attn_metadata = self.attn_backend.make_metadata(**metadata_dict)
sampling_metadata = SamplingMetadata(
seq_groups=None,
seq_data=None,
prompt_lens=None,
selected_token_indices=selected_token_indices,
categorized_sample_indices=None,
generators=None,
perform_sampling=False,
)
return (
input_tokens,
input_positions,
attn_metadata,
sampling_metadata,
)
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
kv_caches: List[torch.Tensor],
) -> Optional[SamplerOutput]:
(input_tokens, input_positions, attn_metadata, sampling_metadata
) = self.prepare_input_tensors(seq_group_metadata_list)
model_executable = self.model
execute_model_kwargs = {
"input_ids": input_tokens,
"positions": input_positions,
"kv_caches": kv_caches,
"attn_metadata": attn_metadata,
}
hidden_states = model_executable(**execute_model_kwargs)
# Compute the logits.
logits = self.model.compute_logits(hidden_states, sampling_metadata)
# Only perform sampling in the driver worker.
if not sampling_metadata.perform_sampling:
return None
# Sample the next token.
output = self.model.sample(
logits=logits,
sampling_metadata=sampling_metadata,
)
return output

View File

@ -12,25 +12,14 @@ from vllm.distributed import (broadcast_tensor_dict,
init_distributed_environment)
from vllm.logger import init_logger
from vllm.model_executor import set_random_seed
from vllm.model_executor.model_loader import get_model
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
from vllm.worker.model_runner import ModelRunner
from vllm.worker.cpu_model_runner import CPUModelRunner
from vllm.worker.worker_base import LoraNotSupportedWorkerBase
logger = init_logger(__name__)
class CPUModelRunner(ModelRunner):
def load_model(self) -> None:
self.model = get_model(self.model_config,
self.device_config,
lora_config=self.lora_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config)
class CPUCacheEngine:
"""Manages the KV cache for CPU backend.