[platforms] refactor cpu code (#10402)

Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
youkaichao 2024-11-16 23:14:23 -08:00 committed by GitHub
parent cf349c4a97
commit 8d74b5aee9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 61 additions and 67 deletions

View File

@ -2,9 +2,6 @@ import os
from functools import partial
from typing import Any, Awaitable, List, Optional, Set, Tuple, Union
import vllm.envs as envs
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
ResultHandler, WorkerMonitor)
@ -13,7 +10,7 @@ from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sequence import ExecuteModelRequest
from vllm.utils import (GiB_bytes, get_distributed_init_method, get_open_port,
from vllm.utils import (get_distributed_init_method, get_open_port,
get_vllm_instance_id, make_async)
from vllm.worker.worker_base import WorkerWrapperBase
@ -57,13 +54,6 @@ class CPUExecutor(ExecutorBase):
os.environ["LOCAL_WORLD_SIZE"] = str(
self.parallel_config.tensor_parallel_size)
self.model_config = _verify_and_get_model_config(self.model_config)
self.cache_config = _verify_and_get_cache_config(self.cache_config)
self.scheduler_config = _verify_and_get_scheduler_config(
self.scheduler_config)
self.parallel_config = _verify_and_get_parallel_config(
self.parallel_config)
# Multiprocessing-based executor does not support multi-node setting.
# Since it only works for single node, we can use the loopback address
# 127.0.0.1 for communication.
@ -313,62 +303,6 @@ class CPUExecutorAsync(CPUExecutor, ExecutorAsyncBase):
self.check_health()
def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if not config.enforce_eager:
logger.warning(
"CUDA graph is not supported on CPU, fallback to the eager "
"mode.")
config.enforce_eager = True
return config
def _verify_and_get_scheduler_config(
config: SchedulerConfig) -> SchedulerConfig:
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if config.chunked_prefill_enabled:
logger.warning("Chunked prefill is not supported on CPU, disable it.")
config.chunked_prefill_enabled = False
return config
def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if config.enable_prefix_caching:
logger.warning("Prefix caching is not supported on CPU, disable it.")
config.enable_prefix_caching = False
kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
if kv_cache_space >= 0:
if kv_cache_space == 0:
config.cpu_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning("Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
"for CPU backend is not set, using 4 by default.")
else:
config.cpu_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore
else:
raise RuntimeError(
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")
return config
def _verify_and_get_parallel_config(config: ParallelConfig) -> ParallelConfig:
if (config.distributed_executor_backend is not None
and config.distributed_executor_backend != "mp"):
logger.warning(
"%s is not supported on CPU, fallback to mp distributed executor "
"backend.", config.distributed_executor_backend)
config.distributed_executor_backend = "mp"
return config
def _driver_method_invoker(driver, method: str, *args, **kwargs):
return getattr(driver, method)(*args, **kwargs)

View File

@ -1,8 +1,19 @@
from typing import TYPE_CHECKING
import psutil
import torch
from vllm.logger import init_logger
from .interface import Platform, PlatformEnum
if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None
logger = init_logger(__name__)
class CpuPlatform(Platform):
_enum = PlatformEnum.CPU
@ -18,3 +29,52 @@ class CpuPlatform(Platform):
@classmethod
def inference_mode(cls):
return torch.no_grad()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
import vllm.envs as envs
from vllm.utils import GiB_bytes
model_config = vllm_config.model_config
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if not model_config.enforce_eager:
logger.warning(
"CUDA graph is not supported on CPU, fallback to the eager "
"mode.")
model_config.enforce_eager = True
cache_config = vllm_config.cache_config
if cache_config.enable_prefix_caching:
logger.warning(
"Prefix caching is not supported on CPU, disable it.")
cache_config.enable_prefix_caching = False
kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
if kv_cache_space >= 0:
if kv_cache_space == 0:
cache_config.cpu_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning(
"Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
"for CPU backend is not set, using 4 by default.")
else:
cache_config.cpu_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore # noqa
else:
raise RuntimeError(
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")
scheduler_config = vllm_config.scheduler_config
if scheduler_config.chunked_prefill_enabled:
logger.warning(
"Chunked prefill is not supported on CPU, disable it.")
scheduler_config.chunked_prefill_enabled = False
parallel_config = vllm_config.parallel_config
if (parallel_config.distributed_executor_backend is not None
and parallel_config.distributed_executor_backend != "mp"):
logger.warning(("%s is not supported on CPU, fallback to mp "
"distributed executor backend."),
parallel_config.distributed_executor_backend)
parallel_config.distributed_executor_backend = "mp"