[Chore] Rename Processor to InputProcessor (#29682)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Cyrus Leung 2025-11-29 01:35:41 +08:00 committed by GitHub
parent d40c854009
commit 8d9338fae4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 723 additions and 693 deletions

View File

@ -114,7 +114,7 @@ def mock_serving_setup():
mock_engine.add_lora.reset_mock()
mock_engine.model_config = MockModelConfig()
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
models = OpenAIServingModels(

View File

@ -429,7 +429,7 @@ async def test_serving_chat_returns_correct_model_name():
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
mock_engine.model_config = MockModelConfig()
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
serving_chat = _build_serving_chat(mock_engine)
@ -459,7 +459,7 @@ async def test_serving_chat_should_set_correct_max_tokens():
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
mock_engine.model_config = MockModelConfig()
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
serving_chat = _build_serving_chat(mock_engine)
@ -492,7 +492,7 @@ async def test_serving_chat_should_set_correct_max_tokens():
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
mock_engine.model_config = mock_model_config
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
# Initialize the serving chat
@ -537,7 +537,7 @@ async def test_serving_chat_should_set_correct_max_tokens():
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
mock_engine.model_config = mock_model_config
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
# Initialize the serving chat
@ -583,7 +583,7 @@ async def test_serving_chat_could_load_correct_generation_config():
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
mock_engine.model_config = mock_model_config
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
# Initialize the serving chat
@ -629,7 +629,7 @@ async def test_serving_chat_did_set_correct_cache_salt(model_type):
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
mock_engine.model_config = mock_model_config
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
serving_chat = _build_serving_chat(mock_engine)
@ -662,7 +662,7 @@ async def test_serving_chat_data_parallel_rank_extraction():
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
mock_engine.errored = False
mock_engine.model_config = MockModelConfig()
mock_engine.processor = MagicMock()
mock_engine.input_processor = MagicMock()
mock_engine.io_processor = MagicMock()
# Mock the generate method to return an async generator

View File

@ -23,7 +23,7 @@ def serving() -> OpenAIServing:
model_config.max_model_len = 32768
models = Mock(spec=OpenAIServingModels)
models.model_config = model_config
models.processor = Mock()
models.input_processor = Mock()
models.io_processor = Mock()
serving = OpenAIServing(

View File

@ -30,7 +30,7 @@ async def _async_serving_models_init() -> OpenAIServingModels:
mock_model_config = MagicMock(spec=ModelConfig)
mock_model_config.max_model_len = 2048
mock_engine_client.model_config = mock_model_config
mock_engine_client.processor = MagicMock()
mock_engine_client.input_processor = MagicMock()
mock_engine_client.io_processor = MagicMock()
serving_models = OpenAIServingModels(

View File

@ -127,7 +127,7 @@ class TestInitializeToolSessions:
model_config.get_diff_sampling_param.return_value = {}
engine_client.model_config = model_config
engine_client.processor = MagicMock()
engine_client.input_processor = MagicMock()
engine_client.io_processor = MagicMock()
models = MagicMock()
@ -213,7 +213,7 @@ class TestValidateGeneratorInput:
model_config.get_diff_sampling_param.return_value = {}
engine_client.model_config = model_config
engine_client.processor = MagicMock()
engine_client.input_processor = MagicMock()
engine_client.io_processor = MagicMock()
models = MagicMock()

View File

@ -7,18 +7,17 @@ from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.config import CacheConfig, DeviceConfig, ModelConfig, VllmConfig
from vllm.sampling_params import SamplingParams
from vllm.v1.engine import processor as processor_mod
from vllm.v1.engine.processor import Processor
from vllm.v1.engine import input_processor as input_processor_mod
from vllm.v1.engine.input_processor import InputProcessor
cherry_pil_image = ImageAsset("cherry_blossom").pil_image
stop_pil_image = ImageAsset("stop_sign").pil_image
baby_reading_np_ndarrays = VideoAsset("baby_reading").np_ndarrays
# Mock processor for testing
def _mk_processor(
def _mock_input_processor(
monkeypatch, *, mm_cache_gb: float = 4.0, enable_prefix_caching: bool = True
) -> Processor:
) -> InputProcessor:
"""
Create a Processor instance with minimal configuration suitable for unit
tests without accessing external resources.
@ -36,7 +35,7 @@ def _mk_processor(
raising=True,
)
monkeypatch.setattr(
processor_mod,
input_processor_mod,
"processor_cache_from_config",
lambda vllm_config, mm_registry: None,
raising=True,
@ -65,11 +64,11 @@ def _mk_processor(
device_config=DeviceConfig(device="cpu"),
)
return Processor(vllm_config, tokenizer=None)
return InputProcessor(vllm_config, tokenizer=None)
def test_multi_modal_uuids_length_mismatch_raises(monkeypatch):
processor = _mk_processor(monkeypatch)
input_processor = _mock_input_processor(monkeypatch)
prompt = {
"prompt": "USER: <image>\nDescribe\nASSISTANT:",
@ -79,7 +78,7 @@ def test_multi_modal_uuids_length_mismatch_raises(monkeypatch):
}
with pytest.raises(ValueError, match="must have same length as data"):
processor.process_inputs(
input_processor.process_inputs(
request_id="req-1",
prompt=prompt, # type: ignore[arg-type]
params=SamplingParams(),
@ -87,7 +86,7 @@ def test_multi_modal_uuids_length_mismatch_raises(monkeypatch):
def test_multi_modal_uuids_missing_modality_raises(monkeypatch):
processor = _mk_processor(monkeypatch)
input_processor = _mock_input_processor(monkeypatch)
prompt = {
"prompt": "USER: <image><video>\nDescribe\nASSISTANT:",
@ -101,7 +100,7 @@ def test_multi_modal_uuids_missing_modality_raises(monkeypatch):
}
with pytest.raises(ValueError, match="must be provided if multi_modal_data"):
processor.process_inputs(
input_processor.process_inputs(
request_id="req-2",
prompt=prompt, # type: ignore[arg-type]
params=SamplingParams(),
@ -119,7 +118,7 @@ def test_multi_modal_uuids_missing_modality_raises(monkeypatch):
def test_multi_modal_uuids_accepts_none_and_passes_through(
monkeypatch, mm_cache_gb: float, enable_prefix_caching: bool
):
processor = _mk_processor(
input_processor = _mock_input_processor(
monkeypatch,
mm_cache_gb=mm_cache_gb,
enable_prefix_caching=enable_prefix_caching,
@ -137,7 +136,7 @@ def test_multi_modal_uuids_accepts_none_and_passes_through(
# Monkeypatch only the bound preprocess method on this instance
monkeypatch.setattr(
processor.input_preprocessor, "preprocess", fake_preprocess, raising=True
input_processor.input_preprocessor, "preprocess", fake_preprocess, raising=True
)
# Use a consistent two-image scenario across all configurations
@ -151,7 +150,7 @@ def test_multi_modal_uuids_accepts_none_and_passes_through(
"multi_modal_uuids": mm_uuids,
}
processor.process_inputs(
input_processor.process_inputs(
request_id="req-3",
prompt=prompt, # type: ignore[arg-type]
params=SamplingParams(),
@ -163,7 +162,9 @@ def test_multi_modal_uuids_accepts_none_and_passes_through(
def test_multi_modal_uuids_ignored_when_caching_disabled(monkeypatch):
# When both processor cache is 0 and prefix caching disabled, the
# processor builds overrides from request id instead of using user UUIDs.
processor = _mk_processor(monkeypatch, mm_cache_gb=0.0, enable_prefix_caching=False)
input_processor = _mock_input_processor(
monkeypatch, mm_cache_gb=0.0, enable_prefix_caching=False
)
captured: dict[str, object] = {}
@ -174,7 +175,7 @@ def test_multi_modal_uuids_ignored_when_caching_disabled(monkeypatch):
return {"type": "token", "prompt_token_ids": [1]}
monkeypatch.setattr(
processor.input_preprocessor, "preprocess", fake_preprocess, raising=True
input_processor.input_preprocessor, "preprocess", fake_preprocess, raising=True
)
request_id = "req-42"
@ -188,7 +189,7 @@ def test_multi_modal_uuids_ignored_when_caching_disabled(monkeypatch):
"multi_modal_uuids": mm_uuids,
}
processor.process_inputs(
input_processor.process_inputs(
request_id=request_id,
prompt=prompt, # type: ignore[arg-type]
params=SamplingParams(),

View File

@ -15,7 +15,7 @@ from vllm.sampling_params import SamplingParams
from vllm.tasks import SupportedTask
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.processor import Processor
from vllm.v1.engine.input_processor import InputProcessor
class EngineClient(ABC):
@ -23,7 +23,7 @@ class EngineClient(ABC):
vllm_config: VllmConfig
model_config: ModelConfig
processor: Processor
input_processor: InputProcessor
io_processor: IOProcessor | None
@property

View File

@ -347,7 +347,7 @@ class LLM:
self.supported_tasks = supported_tasks
self.model_config = self.llm_engine.model_config
self.processor = self.llm_engine.processor
self.input_processor = self.llm_engine.input_processor
self.io_processor = self.llm_engine.io_processor
def get_tokenizer(self) -> AnyTokenizer:
@ -364,7 +364,7 @@ class LLM:
self.llm_engine.tokenizer = get_cached_tokenizer(tokenizer)
def reset_mm_cache(self) -> None:
self.processor.clear_mm_cache()
self.input_processor.clear_mm_cache()
self.llm_engine.reset_mm_cache()
def get_default_sampling_params(self) -> SamplingParams:
@ -1674,7 +1674,7 @@ class LLM:
tokenization_kwargs,
)
engine_request = self.processor.process_inputs(
engine_request = self.input_processor.process_inputs(
request_id,
engine_prompt,
params,

View File

@ -284,7 +284,7 @@ class OpenAIServing:
self._async_tokenizer_pool: dict[AnyTokenizer, AsyncMicrobatchTokenizer] = {}
self.log_error_stack = log_error_stack
self.processor = self.models.processor
self.input_processor = self.models.input_processor
self.io_processor = self.models.io_processor
self.model_config = self.models.model_config
self.max_model_len = self.model_config.max_model_len
@ -330,7 +330,7 @@ class OpenAIServing:
return parser
async def reset_mm_cache(self) -> None:
self.processor.clear_mm_cache()
self.input_processor.clear_mm_cache()
await self.engine_client.reset_mm_cache()
async def beam_search(
@ -348,8 +348,8 @@ class OpenAIServing:
length_penalty = params.length_penalty
include_stop_str_in_output = params.include_stop_str_in_output
processor = self.processor
tokenizer = processor.tokenizer
input_processor = self.input_processor
tokenizer = input_processor.tokenizer
if tokenizer is None:
raise ValueError(
"You cannot use beam search when `skip_tokenizer_init` is True"
@ -1214,7 +1214,7 @@ class OpenAIServing:
self.max_model_len, params.truncate_prompt_tokens, tokenization_kwargs
)
engine_request = self.processor.process_inputs(
engine_request = self.input_processor.process_inputs(
request_id,
engine_prompt,
params,

View File

@ -69,7 +69,7 @@ class OpenAIServingModels:
)
self.lora_resolver_lock: dict[str, Lock] = defaultdict(Lock)
self.processor = self.engine_client.processor
self.input_processor = self.engine_client.input_processor
self.io_processor = self.engine_client.io_processor
self.model_config = self.engine_client.model_config
self.max_model_len = self.model_config.max_model_len

View File

@ -10,6 +10,7 @@ from typing import Any, cast
import numpy as np
import torch
from typing_extensions import deprecated
import vllm.envs as envs
from vllm.config import VllmConfig
@ -35,9 +36,9 @@ from vllm.utils.math_utils import cdiv
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.core_client import EngineCoreClient
from vllm.v1.engine.exceptions import EngineDeadError, EngineGenerateError
from vllm.v1.engine.input_processor import InputProcessor
from vllm.v1.engine.output_processor import OutputProcessor, RequestOutputCollector
from vllm.v1.engine.parallel_sampling import ParentRequest
from vllm.v1.engine.processor import Processor
from vllm.v1.executor import Executor
from vllm.v1.metrics.loggers import (
StatLoggerFactory,
@ -112,7 +113,7 @@ class AsyncLLM(EngineClient):
else:
tokenizer = init_tokenizer_from_configs(self.model_config)
self.processor = Processor(self.vllm_config, tokenizer)
self.input_processor = InputProcessor(self.vllm_config, tokenizer)
self.io_processor = get_io_processor(
self.vllm_config,
self.model_config.io_processor_plugin,
@ -193,6 +194,14 @@ class AsyncLLM(EngineClient):
else:
self.profiler = None
@property
@deprecated(
"`AsyncLLM.processor` has been renamed to `AsyncLLM.input_processor`. "
"The old name will be removed in v0.13."
)
def processor(self):
return self.input_processor
@classmethod
def from_vllm_config(
cls,
@ -293,11 +302,7 @@ class AsyncLLM(EngineClient):
request = prompt
else:
assert prompt_text is None
logger.warning_once(
"Processor has been moved under OpenAIServing and will "
"be removed from AsyncLLM in v0.13."
)
request = self.processor.process_inputs(
request = self.input_processor.process_inputs(
request_id,
prompt,
params,
@ -481,7 +486,7 @@ class AsyncLLM(EngineClient):
output_processor = self.output_processor
log_stats = self.log_stats
logger_manager = self.logger_manager
processor = self.processor
input_processor = self.input_processor
async def output_handler():
try:
@ -532,7 +537,7 @@ class AsyncLLM(EngineClient):
engine_idx=outputs.engine_index,
scheduler_stats=outputs.scheduler_stats,
iteration_stats=iteration_stats,
mm_cache_stats=processor.stat_mm_cache(),
mm_cache_stats=input_processor.stat_mm_cache(),
)
except Exception as e:
logger.exception("AsyncLLM output_handler failed.")
@ -699,11 +704,11 @@ class AsyncLLM(EngineClient):
@property
def tokenizer(self) -> AnyTokenizer | None:
return self.processor.tokenizer
return self.input_processor.tokenizer
@tokenizer.setter
def tokenizer(self, tokenizer: AnyTokenizer | None) -> None:
self.processor.tokenizer = tokenizer
self.input_processor.tokenizer = tokenizer
async def get_tokenizer(self) -> AnyTokenizer:
if self.tokenizer is None:
@ -738,7 +743,7 @@ class AsyncLLM(EngineClient):
await asyncio.gather(*coros)
async def reset_mm_cache(self) -> None:
self.processor.clear_mm_cache()
self.input_processor.clear_mm_cache()
await self.engine_core.reset_mm_cache_async()
async def reset_prefix_cache(self) -> None:

View File

@ -0,0 +1,637 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import time
from collections.abc import Mapping
from typing import Any, Literal, cast
from vllm.config import VllmConfig
from vllm.inputs import ProcessorInputs, PromptType, SingletonInputs
from vllm.inputs.parse import split_enc_dec_inputs
from vllm.inputs.preprocess import InputPreprocessor
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
from vllm.multimodal.cache import processor_cache_from_config
from vllm.multimodal.inputs import MultiModalFeatureSpec, MultiModalUUIDDict
from vllm.multimodal.parse import MultiModalDataParser
from vllm.multimodal.processing import EncDecMultiModalProcessor
from vllm.multimodal.utils import argsort_mm_positions
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
from vllm.utils import length_from_prompt_token_ids_or_embeds
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.metrics.stats import MultiModalCacheStats
from vllm.v1.structured_output.backend_guidance import validate_guidance_grammar
from vllm.v1.structured_output.backend_lm_format_enforcer import (
validate_structured_output_request_lm_format_enforcer,
)
from vllm.v1.structured_output.backend_outlines import (
validate_structured_output_request_outlines,
)
from vllm.v1.structured_output.backend_xgrammar import validate_xgrammar_grammar
logger = init_logger(__name__)
class InputProcessor:
def __init__(
self,
vllm_config: VllmConfig,
tokenizer: AnyTokenizer | None,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
) -> None:
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.structured_outputs_config = vllm_config.structured_outputs_config
self.generation_config_fields = self.model_config.try_get_generation_config()
self.mm_registry = mm_registry
self.mm_processor_cache = processor_cache_from_config(vllm_config, mm_registry)
self.input_preprocessor = InputPreprocessor(
self.model_config,
tokenizer,
mm_registry,
mm_processor_cache=self.mm_processor_cache,
)
@property
def tokenizer(self) -> AnyTokenizer | None:
return self.input_preprocessor.tokenizer
@tokenizer.setter
def tokenizer(self, tokenizer: AnyTokenizer | None) -> None:
self.input_preprocessor.tokenizer = tokenizer
def _validate_logprobs(
self,
params: SamplingParams,
) -> None:
max_logprobs = self.model_config.max_logprobs
if max_logprobs == -1:
max_logprobs = self.model_config.get_vocab_size()
# Validate sample logprobs.
if params.logprobs:
num_logprobs = params.logprobs
if num_logprobs == -1:
num_logprobs = self.model_config.get_vocab_size()
if num_logprobs > max_logprobs:
raise ValueError(
f"Requested sample logprobs of {num_logprobs}, "
f"which is greater than max allowed: {max_logprobs}"
)
# Validate prompt logprobs.
if params.prompt_logprobs:
num_prompt_logprobs = params.prompt_logprobs
if num_prompt_logprobs == -1:
num_prompt_logprobs = self.model_config.get_vocab_size()
if num_prompt_logprobs > max_logprobs:
raise ValueError(
f"Requested prompt logprobs of {num_prompt_logprobs}, "
f"which is greater than max allowed: {max_logprobs}"
)
def _validate_sampling_params(
self,
params: SamplingParams,
) -> None:
self._validate_structured_output(params)
self._validate_logit_bias(params)
if params.allowed_token_ids is None:
return
if not params.allowed_token_ids:
raise ValueError("allowed_token_ids is not None and empty!")
if self.tokenizer is None:
# When skip_tokenizer_init=True, we can't validate token IDs
# Skip validation and let the model handle invalid tokens
return
vocab_size = len(self.tokenizer)
if not all(0 <= tid < vocab_size for tid in params.allowed_token_ids):
raise ValueError("allowed_token_ids contains out-of-vocab token id!")
def _validate_logit_bias(
self,
params: SamplingParams,
) -> None:
"""Validate logit_bias token IDs are within vocabulary range."""
if not params.logit_bias:
return
vocab_size = self.model_config.get_vocab_size()
invalid_token_ids = []
for token_id in params.logit_bias:
if token_id < 0 or token_id >= vocab_size:
invalid_token_ids.append(token_id)
if invalid_token_ids:
raise ValueError(
f"token_id(s) {invalid_token_ids} in logit_bias contain "
f"out-of-vocab token ids. Vocabulary size: {vocab_size}"
)
def _validate_supported_sampling_params(
self,
params: SamplingParams,
) -> None:
# Logits processors not supported.
if params.logits_processors:
raise ValueError(
"vLLM V1 does not support per request user provided logits processors."
)
# Async scheduling + spec decode currently incompatible with some
# sampling parameters.
if (
self.vllm_config.speculative_config is not None
and self.vllm_config.scheduler_config.async_scheduling
and (
params.frequency_penalty != 0.0
or params.presence_penalty != 0.0
or params.repetition_penalty != 1.0
or params.bad_words_token_ids
or params.structured_outputs
)
):
raise ValueError(
"async scheduling with spec decoding doesn't yet support "
"penalties, bad words or structured outputs in sampling parameters."
)
def _validate_params(
self,
params: SamplingParams | PoolingParams,
):
"""
Validate supported SamplingParam.
Should raise ValueError if unsupported for API Server.
"""
if isinstance(params, PoolingParams):
return
self._validate_logprobs(params)
self._validate_sampling_params(params)
self._validate_supported_sampling_params(params)
def _validate_multi_modal_uuids(self, prompt: PromptType) -> None:
"""
Validate that user-provided multi_modal_uuids align with
multi_modal_data in the incoming request prompt(s).
Only checks lengths; `None` entries are allowed and will be
auto-hashed downstream.
"""
def _validate_single_prompt(single_prompt: dict | str) -> None:
if not isinstance(single_prompt, dict):
return
mm_data = single_prompt.get("multi_modal_data")
mm_uuids = single_prompt.get("multi_modal_uuids")
if not mm_data or not mm_uuids:
return
for modality, items in mm_data.items():
if modality in mm_uuids:
data_len = len(items) if isinstance(items, list) else 1
uuid_len = (
len(mm_uuids[modality])
if isinstance(mm_uuids[modality], list)
else 1
)
if uuid_len != data_len:
raise ValueError(
f"multi_modal_uuids for modality '{modality}' "
"must have same length as data: got "
f"{uuid_len} uuids vs "
f"{data_len} items."
)
else:
raise ValueError(
f"multi_modal_uuids for modality '{modality}' must "
"be provided if multi_modal_data is provided."
)
# Handle explicit encoder/decoder prompts or singleton prompt
if isinstance(prompt, dict) and "encoder_prompt" in prompt:
enc = prompt.get("encoder_prompt")
dec = prompt.get("decoder_prompt")
if enc is not None:
_validate_single_prompt(cast(dict | str, enc))
if dec is not None:
_validate_single_prompt(cast(dict | str, dec))
else:
_validate_single_prompt(prompt) # type: ignore[arg-type]
def _validate_lora(self, lora_request: LoRARequest | None) -> None:
if lora_request is None:
return
# LoRA request passed in while LoRA is not enabled
if not self.lora_config:
raise ValueError(
f"Got lora_request {lora_request} but LoRA is not enabled!"
)
if self.tokenizer is not None:
logger.warning_once(
"vLLM has deprecated support for supporting different "
"tokenizers for different LoRAs. By default, vLLM uses base "
"model's tokenizer. If you are using a LoRA "
"with its own tokenizer, consider specifying `--tokenizer "
"[lora_path]` to use the LoRA tokenizer."
)
def _validate_structured_output(self, params: SamplingParams) -> None:
if not params.structured_outputs or not self.structured_outputs_config:
return
if self.model_config.skip_tokenizer_init and params.structured_outputs:
raise ValueError(
"Structured outputs requires a tokenizer so it can't be used with 'skip_tokenizer_init'" # noqa: E501
)
backend = self.structured_outputs_config.backend
if _backend := params.structured_outputs._backend:
# Request-level backend selection is not supported.
# The values may differ if `params` is reused and was set
# to a specific backend based on `auto` behavior in a previous
# request. We remember that it was set as a result of `auto`
# using the `_backend_was_auto` field set in the params.
if backend != _backend and not (
backend == "auto" and params.structured_outputs._backend_was_auto
):
raise ValueError(
"Request-level structured output backend selection is not "
f"supported. The request specified '{_backend}', but vLLM "
f"was initialised with '{backend}'. This error can be "
"resolved by removing '_backend' from the request."
)
else:
params.structured_outputs._backend = backend
# Request content validation
if (
isinstance(params.structured_outputs.choice, list)
and not params.structured_outputs.choice
):
# It is invalid for choice to be an empty list
raise ValueError(
f"Choice '{params.structured_outputs.choice}' cannot be an empty list" # noqa: E501
)
# Reject empty string grammar early to avoid engine-side crashes
if (
isinstance(params.structured_outputs.grammar, str)
and params.structured_outputs.grammar.strip() == ""
):
raise ValueError("structured_outputs.grammar cannot be an empty string")
if backend.startswith("xgrammar"):
# xgrammar with no fallback
validate_xgrammar_grammar(params)
elif backend.startswith("guidance"):
# TODO: ideally we would have the LLTokenizer here as Lark syntax
# allows <|special_token|> and similar, see
# https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md#special-tokens
# Without tokenizer these are disallowed in grammars.
if isinstance(self.tokenizer, MistralTokenizer):
raise ValueError(
"Mistral tokenizer is not supported for the 'guidance' "
"structured output backend. Please use ['xgrammar', 'outlines'] "
"backends or tokenizer_mode='hf' instead."
)
validate_guidance_grammar(params, tokenizer=None)
elif backend == "outlines":
# outlines backend
validate_structured_output_request_outlines(params)
elif backend == "lm-format-enforcer":
# lm format enforcer backend
if isinstance(self.tokenizer, MistralTokenizer):
raise ValueError(
"Mistral tokenizer is not supported for the 'lm-format-enforcer' "
"structured output backend. Please use ['xgrammar', 'outlines'] "
"backends or tokenizer_mode='hf' instead."
)
validate_structured_output_request_lm_format_enforcer(params)
else:
# NOTE: backend must be "auto" here, because we have
# checked supported_backends above.
# In this mode, we set opinionated defaults based on what we think
# will satisfy the most use cases without having to worry about
# this setting. We include fallback behavior here, but not with any
# other setting where a specific backend was specified.
try:
validate_xgrammar_grammar(params)
params.structured_outputs._backend = "xgrammar"
except ValueError:
# The request either failed validation
# or includes some jsonschema feature(s) that
# are not supported in xgrammar.
if isinstance(self.tokenizer, MistralTokenizer):
# Fall back to outlines if the tokenizer is Mistral
validate_structured_output_request_outlines(params)
params.structured_outputs._backend = "outlines"
else:
# Fall back to guidance by default.
validate_guidance_grammar(params, tokenizer=None)
params.structured_outputs._backend = "guidance"
# Remember that this backend was set automatically
params.structured_outputs._backend_was_auto = True
def _maybe_build_mm_uuids(
self,
request_id: str,
prompt: PromptType,
) -> MultiModalUUIDDict | None:
"""Build per-item multimodal hash overrides when enabled. In this case,
multimodal data items are identified by their request id, modality and
index rather than their content.
Returns a dictionary of modality -> list[str] of overrides, or None if
disabled or no multimodal data is present.
"""
def _extract_mm_data(p: PromptType):
if isinstance(p, dict) and "encoder_prompt" in p:
enc = p.get("encoder_prompt")
if isinstance(enc, dict):
return enc.get("multi_modal_data")
return None
if isinstance(p, dict):
return p.get("multi_modal_data")
return None
mm_data = _extract_mm_data(prompt)
if not mm_data:
return None
mm_uuids: dict[str, list[str | None] | str] = {}
for modality, data in mm_data.items():
# Hash each item for embedding inputs.
n = (
len(data)
if isinstance(data, list) or MultiModalDataParser.is_embeddings(data)
else 1
)
mm_uuids[modality] = [f"{request_id}-{modality}-{i}" for i in range(n)]
return mm_uuids
def process_inputs(
self,
request_id: str,
prompt: PromptType,
params: SamplingParams | PoolingParams,
arrival_time: float | None = None,
lora_request: LoRARequest | None = None,
tokenization_kwargs: dict[str, Any] | None = None,
trace_headers: Mapping[str, str] | None = None,
priority: int = 0,
data_parallel_rank: int | None = None,
) -> EngineCoreRequest:
self._validate_lora(lora_request)
self._validate_params(params)
data_parallel_size = self.vllm_config.parallel_config.data_parallel_size
if data_parallel_rank is not None and not (
0 <= data_parallel_rank < data_parallel_size
):
raise ValueError(
f"data_parallel_rank {data_parallel_rank} "
f"is out of range [0, {data_parallel_size})."
)
if arrival_time is None:
arrival_time = time.time()
# Optionally generate multimodal hash overrides to avoid hashing
# multimodal data items by their content as their identifiers.
# NOTE: when users explicitly turn off BOTH prefix caching and input
# processing caching, no multimodal features or embeddings will be
# reused across requests, therefore identifying multimodal data items
# by their content is no longer necessary, and we create uuids with
# request id-modality-index as multimodal hash overrides.
if (
self.model_config.multimodal_config
and self.model_config.multimodal_config.mm_processor_cache_gb == 0
and not self.cache_config.enable_prefix_caching
):
mm_uuids = self._maybe_build_mm_uuids(request_id, prompt)
else:
# Otherwise, use user-provided uuids as multimodal hash overrides
# if provided.
self._validate_multi_modal_uuids(prompt)
if isinstance(prompt, dict):
mm_uuids = cast(
MultiModalUUIDDict | None, prompt.get("multi_modal_uuids")
)
else:
mm_uuids = None
# Process inputs, which includes:
# 1. Tokenize text prompt, with LoRA request if one exists.
# 2. For multimodal models with a merged preprocessor, preprocess
# multimodal data and expand prompt token ids accordingly.
processed_inputs: ProcessorInputs = self.input_preprocessor.preprocess(
prompt,
tokenization_kwargs=tokenization_kwargs,
mm_uuids=mm_uuids,
)
from vllm.platforms import current_platform
current_platform.validate_request(
prompt=prompt,
params=params,
processed_inputs=processed_inputs,
)
eos_token_id = self.input_preprocessor.get_eos_token_id()
encoder_inputs, decoder_inputs = split_enc_dec_inputs(processed_inputs)
self._validate_model_inputs(encoder_inputs, decoder_inputs)
# Mypy can be conservative for TypedDict unions; normalize access.
if decoder_inputs["type"] == "embeds":
prompt_token_ids = None
prompt_embeds = decoder_inputs["prompt_embeds"]
else:
prompt_token_ids = decoder_inputs["prompt_token_ids"]
prompt_embeds = None
sampling_params = None
pooling_params = None
if isinstance(params, SamplingParams):
# TODO: can we avoid cloning here in multiproc case?
sampling_params = params.clone()
# If unset max tokens, then generate up to the max_model_len.
if sampling_params.max_tokens is None:
seq_len = length_from_prompt_token_ids_or_embeds(
prompt_token_ids, prompt_embeds
)
sampling_params.max_tokens = self.model_config.max_model_len - seq_len
sampling_params.update_from_generation_config(
self.generation_config_fields, eos_token_id
)
if self.tokenizer is not None:
sampling_params.update_from_tokenizer(self.tokenizer)
else:
pooling_params = params.clone()
# Multimodal related.
mm_features: list[MultiModalFeatureSpec] | None = None
if decoder_inputs["type"] == "multimodal":
decoder_mm_inputs = decoder_inputs["mm_kwargs"]
decoder_mm_positions = decoder_inputs["mm_placeholders"]
decoder_mm_hashes = decoder_inputs["mm_hashes"]
# Merge and flatten multimodal placeholders, hashes and inputs
# from dictionaries to lists, and sort them by each item's position
# in the input sequence.
sorted_mm_idxs = argsort_mm_positions(decoder_mm_positions)
mm_features = []
for modality, idx in sorted_mm_idxs:
mm_features.append(
MultiModalFeatureSpec(
data=decoder_mm_inputs[modality][idx],
modality=modality,
identifier=decoder_mm_hashes[modality][idx],
mm_position=decoder_mm_positions[modality][idx],
)
)
return EngineCoreRequest(
request_id=request_id,
prompt_token_ids=prompt_token_ids,
prompt_embeds=prompt_embeds,
mm_features=mm_features,
sampling_params=sampling_params,
pooling_params=pooling_params,
eos_token_id=eos_token_id,
arrival_time=arrival_time,
lora_request=lora_request,
cache_salt=decoder_inputs.get("cache_salt"),
priority=priority,
data_parallel_rank=data_parallel_rank,
trace_headers=trace_headers,
)
def _validate_model_inputs(
self, encoder_inputs: SingletonInputs | None, decoder_inputs: SingletonInputs
):
if encoder_inputs is not None:
self._validate_model_input(encoder_inputs, prompt_type="encoder")
self._validate_model_input(decoder_inputs, prompt_type="decoder")
def _validate_model_input(
self,
prompt_inputs: SingletonInputs,
*,
prompt_type: Literal["encoder", "decoder"],
):
model_config = self.model_config
prompt_ids = (
None
if prompt_inputs["type"] == "embeds"
else prompt_inputs["prompt_token_ids"]
)
prompt_embeds = (
prompt_inputs["prompt_embeds"]
if prompt_inputs["type"] == "embeds"
else None
)
prompt_len = length_from_prompt_token_ids_or_embeds(prompt_ids, prompt_embeds)
if not prompt_ids:
if prompt_type == "encoder" and model_config.is_multimodal_model:
pass # Mllama may have empty encoder inputs for text-only data
elif prompt_inputs["type"] == "embeds":
pass # Prompt embeds should not have prompt_ids.
else:
raise ValueError(f"The {prompt_type} prompt cannot be empty")
tokenizer = self.tokenizer
if tokenizer is not None:
max_input_id = max(prompt_ids or [], default=0)
# NOTE: tokenizer.max_token_id is the tokenizers vocab size while
# self.model_config.get_vocab_size() is the models vocab size.
# For Qwen3 models, the language model has extra tokens that do
# not exist in the tokenizer, and vice versa for multimodal
# placeholder tokens in some multimodal models.
# See https://github.com/QwenLM/Qwen3/issues/29#issuecomment-1933720399 # noqa: E501
# and https://github.com/vllm-project/vllm/pull/22471#discussion_r2312251421 # noqa: E501
# Here we take the max of the two to determine if a token id is
# truly out-of-vocabulary.
if max_input_id > max(
tokenizer.max_token_id, self.model_config.get_vocab_size() - 1
):
raise ValueError(f"Token id {max_input_id} is out of vocabulary")
max_prompt_len = self.model_config.max_model_len
if prompt_len > max_prompt_len:
if prompt_type == "encoder" and model_config.is_multimodal_model:
mm_registry = self.input_preprocessor.mm_registry
mm_processor = mm_registry.create_processor(
model_config,
tokenizer=tokenizer,
)
assert isinstance(mm_processor, EncDecMultiModalProcessor)
if mm_processor.pad_dummy_encoder_prompt:
return # Skip encoder length check for Whisper
if model_config.is_multimodal_model:
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens plus multimodal tokens. For image "
"inputs, the number of image tokens depends on the number "
"of images, and possibly their aspect ratios as well."
)
else:
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens."
)
raise ValueError(
f"The {prompt_type} prompt (length {prompt_len}) is "
f"longer than the maximum model length of {max_prompt_len}. "
f"{suggestion}"
)
# TODO: Find out how many placeholder tokens are there so we can
# check that chunked prefill does not truncate them
# max_batch_len = self.scheduler_config.max_num_batched_tokens
if (
prompt_len == max_prompt_len
and prompt_type == "decoder"
and not model_config.is_multimodal_model
and self.model_config.runner_type != "pooling"
):
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens (prompt + requested output tokens)."
)
raise ValueError(
f"The {prompt_type} prompt (length {prompt_len}) plus the number of "
f"requested output tokens (at least 1) is longer than the maximum "
f"model length of {max_prompt_len}. {suggestion}"
)
def stat_mm_cache(self) -> MultiModalCacheStats | None:
return self.input_preprocessor.stat_mm_cache()
def clear_mm_cache(self) -> None:
self.input_preprocessor.clear_mm_cache()

View File

@ -7,7 +7,7 @@ from copy import copy
from typing import Any, cast
import torch.nn as nn
from typing_extensions import TypeVar
from typing_extensions import TypeVar, deprecated
import vllm.envs as envs
from vllm.config import ParallelConfig, VllmConfig
@ -28,9 +28,9 @@ from vllm.transformers_utils.tokenizer import AnyTokenizer, init_tokenizer_from_
from vllm.usage.usage_lib import UsageContext
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.core_client import EngineCoreClient
from vllm.v1.engine.input_processor import InputProcessor
from vllm.v1.engine.output_processor import OutputProcessor
from vllm.v1.engine.parallel_sampling import ParentRequest
from vllm.v1.engine.processor import Processor
from vllm.v1.executor import Executor
from vllm.v1.metrics.loggers import StatLoggerFactory, StatLoggerManager
from vllm.v1.metrics.reader import Metric, get_metrics_snapshot
@ -88,7 +88,7 @@ class LLMEngine:
else:
tokenizer = init_tokenizer_from_configs(self.model_config)
self.processor = Processor(self.vllm_config, tokenizer)
self.input_processor = InputProcessor(self.vllm_config, tokenizer)
self.io_processor = get_io_processor(
self.vllm_config,
self.model_config.io_processor_plugin,
@ -135,6 +135,14 @@ class LLMEngine:
# Don't keep the dummy data in memory
self.reset_mm_cache()
@property
@deprecated(
"`LLMEngine.processor` has been renamed to `LLMEngine.input_processor`. "
"The old name will be removed in v0.13."
)
def processor(self):
return self.input_processor
@classmethod
def from_vllm_config(
cls,
@ -231,11 +239,7 @@ class LLMEngine:
request = prompt
else:
assert prompt_text is None
logger.warning_once(
"Processor has been moved under LLM and will "
"be removed from LLMEngine in v0.13."
)
request = self.processor.process_inputs(
request = self.input_processor.process_inputs(
request_id,
prompt,
params,
@ -307,7 +311,7 @@ class LLMEngine:
self.logger_manager.record(
scheduler_stats=outputs.scheduler_stats,
iteration_stats=iteration_stats,
mm_cache_stats=self.processor.stat_mm_cache(),
mm_cache_stats=self.input_processor.stat_mm_cache(),
)
self.do_log_stats_with_interval()
@ -320,7 +324,7 @@ class LLMEngine:
self.engine_core.profile(False)
def reset_mm_cache(self):
self.processor.clear_mm_cache()
self.input_processor.clear_mm_cache()
self.engine_core.reset_mm_cache()
def reset_prefix_cache(self):
@ -347,11 +351,11 @@ class LLMEngine:
@property
def tokenizer(self) -> AnyTokenizer | None:
return self.processor.tokenizer
return self.input_processor.tokenizer
@tokenizer.setter
def tokenizer(self, tokenizer: AnyTokenizer | None) -> None:
self.processor.tokenizer = tokenizer
self.input_processor.tokenizer = tokenizer
def get_tokenizer(self) -> AnyTokenizer:
if self.tokenizer is None:

View File

@ -1,637 +1,20 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import time
from collections.abc import Mapping
from typing import Any, Literal, cast
from vllm.config import VllmConfig
from vllm.inputs import ProcessorInputs, PromptType, SingletonInputs
from vllm.inputs.parse import split_enc_dec_inputs
from vllm.inputs.preprocess import InputPreprocessor
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
from vllm.multimodal.cache import processor_cache_from_config
from vllm.multimodal.inputs import MultiModalFeatureSpec, MultiModalUUIDDict
from vllm.multimodal.parse import MultiModalDataParser
from vllm.multimodal.processing import EncDecMultiModalProcessor
from vllm.multimodal.utils import argsort_mm_positions
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.transformers_utils.tokenizers.mistral import MistralTokenizer
from vllm.utils import length_from_prompt_token_ids_or_embeds
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.metrics.stats import MultiModalCacheStats
from vllm.v1.structured_output.backend_guidance import validate_guidance_grammar
from vllm.v1.structured_output.backend_lm_format_enforcer import (
validate_structured_output_request_lm_format_enforcer,
)
from vllm.v1.structured_output.backend_outlines import (
validate_structured_output_request_outlines,
)
from vllm.v1.structured_output.backend_xgrammar import validate_xgrammar_grammar
logger = init_logger(__name__)
import warnings
class Processor:
def __init__(
self,
vllm_config: VllmConfig,
tokenizer: AnyTokenizer | None,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
) -> None:
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.structured_outputs_config = vllm_config.structured_outputs_config
def __getattr__(name: str):
if name == "Processor":
from .input_processor import InputProcessor
self.generation_config_fields = self.model_config.try_get_generation_config()
self.mm_registry = mm_registry
self.mm_processor_cache = processor_cache_from_config(vllm_config, mm_registry)
self.input_preprocessor = InputPreprocessor(
self.model_config,
tokenizer,
mm_registry,
mm_processor_cache=self.mm_processor_cache,
warnings.warn(
"`vllm.v1.engine.processor.Processor` has been moved to "
"`vllm.v1.engine.input_processor.InputProcessor`. "
"The old name will be removed in v0.13.",
DeprecationWarning,
stacklevel=2,
)
@property
def tokenizer(self) -> AnyTokenizer | None:
return self.input_preprocessor.tokenizer
return InputProcessor
@tokenizer.setter
def tokenizer(self, tokenizer: AnyTokenizer | None) -> None:
self.input_preprocessor.tokenizer = tokenizer
def _validate_logprobs(
self,
params: SamplingParams,
) -> None:
max_logprobs = self.model_config.max_logprobs
if max_logprobs == -1:
max_logprobs = self.model_config.get_vocab_size()
# Validate sample logprobs.
if params.logprobs:
num_logprobs = params.logprobs
if num_logprobs == -1:
num_logprobs = self.model_config.get_vocab_size()
if num_logprobs > max_logprobs:
raise ValueError(
f"Requested sample logprobs of {num_logprobs}, "
f"which is greater than max allowed: {max_logprobs}"
)
# Validate prompt logprobs.
if params.prompt_logprobs:
num_prompt_logprobs = params.prompt_logprobs
if num_prompt_logprobs == -1:
num_prompt_logprobs = self.model_config.get_vocab_size()
if num_prompt_logprobs > max_logprobs:
raise ValueError(
f"Requested prompt logprobs of {num_prompt_logprobs}, "
f"which is greater than max allowed: {max_logprobs}"
)
def _validate_sampling_params(
self,
params: SamplingParams,
) -> None:
self._validate_structured_output(params)
self._validate_logit_bias(params)
if params.allowed_token_ids is None:
return
if not params.allowed_token_ids:
raise ValueError("allowed_token_ids is not None and empty!")
if self.tokenizer is None:
# When skip_tokenizer_init=True, we can't validate token IDs
# Skip validation and let the model handle invalid tokens
return
vocab_size = len(self.tokenizer)
if not all(0 <= tid < vocab_size for tid in params.allowed_token_ids):
raise ValueError("allowed_token_ids contains out-of-vocab token id!")
def _validate_logit_bias(
self,
params: SamplingParams,
) -> None:
"""Validate logit_bias token IDs are within vocabulary range."""
if not params.logit_bias:
return
vocab_size = self.model_config.get_vocab_size()
invalid_token_ids = []
for token_id in params.logit_bias:
if token_id < 0 or token_id >= vocab_size:
invalid_token_ids.append(token_id)
if invalid_token_ids:
raise ValueError(
f"token_id(s) {invalid_token_ids} in logit_bias contain "
f"out-of-vocab token ids. Vocabulary size: {vocab_size}"
)
def _validate_supported_sampling_params(
self,
params: SamplingParams,
) -> None:
# Logits processors not supported.
if params.logits_processors:
raise ValueError(
"vLLM V1 does not support per request user provided logits processors."
)
# Async scheduling + spec decode currently incompatible with some
# sampling parameters.
if (
self.vllm_config.speculative_config is not None
and self.vllm_config.scheduler_config.async_scheduling
and (
params.frequency_penalty != 0.0
or params.presence_penalty != 0.0
or params.repetition_penalty != 1.0
or params.bad_words_token_ids
or params.structured_outputs
)
):
raise ValueError(
"async scheduling with spec decoding doesn't yet support "
"penalties, bad words or structured outputs in sampling parameters."
)
def _validate_params(
self,
params: SamplingParams | PoolingParams,
):
"""
Validate supported SamplingParam.
Should raise ValueError if unsupported for API Server.
"""
if isinstance(params, PoolingParams):
return
self._validate_logprobs(params)
self._validate_sampling_params(params)
self._validate_supported_sampling_params(params)
def _validate_multi_modal_uuids(self, prompt: PromptType) -> None:
"""
Validate that user-provided multi_modal_uuids align with
multi_modal_data in the incoming request prompt(s).
Only checks lengths; `None` entries are allowed and will be
auto-hashed downstream.
"""
def _validate_single_prompt(single_prompt: dict | str) -> None:
if not isinstance(single_prompt, dict):
return
mm_data = single_prompt.get("multi_modal_data")
mm_uuids = single_prompt.get("multi_modal_uuids")
if not mm_data or not mm_uuids:
return
for modality, items in mm_data.items():
if modality in mm_uuids:
data_len = len(items) if isinstance(items, list) else 1
uuid_len = (
len(mm_uuids[modality])
if isinstance(mm_uuids[modality], list)
else 1
)
if uuid_len != data_len:
raise ValueError(
f"multi_modal_uuids for modality '{modality}' "
"must have same length as data: got "
f"{uuid_len} uuids vs "
f"{data_len} items."
)
else:
raise ValueError(
f"multi_modal_uuids for modality '{modality}' must "
"be provided if multi_modal_data is provided."
)
# Handle explicit encoder/decoder prompts or singleton prompt
if isinstance(prompt, dict) and "encoder_prompt" in prompt:
enc = prompt.get("encoder_prompt")
dec = prompt.get("decoder_prompt")
if enc is not None:
_validate_single_prompt(cast(dict | str, enc))
if dec is not None:
_validate_single_prompt(cast(dict | str, dec))
else:
_validate_single_prompt(prompt) # type: ignore[arg-type]
def _validate_lora(self, lora_request: LoRARequest | None) -> None:
if lora_request is None:
return
# LoRA request passed in while LoRA is not enabled
if not self.lora_config:
raise ValueError(
f"Got lora_request {lora_request} but LoRA is not enabled!"
)
if self.tokenizer is not None:
logger.warning_once(
"vLLM has deprecated support for supporting different "
"tokenizers for different LoRAs. By default, vLLM uses base "
"model's tokenizer. If you are using a LoRA "
"with its own tokenizer, consider specifying `--tokenizer "
"[lora_path]` to use the LoRA tokenizer."
)
def _validate_structured_output(self, params: SamplingParams) -> None:
if not params.structured_outputs or not self.structured_outputs_config:
return
if self.model_config.skip_tokenizer_init and params.structured_outputs:
raise ValueError(
"Structured outputs requires a tokenizer so it can't be used with 'skip_tokenizer_init'" # noqa: E501
)
backend = self.structured_outputs_config.backend
if _backend := params.structured_outputs._backend:
# Request-level backend selection is not supported.
# The values may differ if `params` is reused and was set
# to a specific backend based on `auto` behavior in a previous
# request. We remember that it was set as a result of `auto`
# using the `_backend_was_auto` field set in the params.
if backend != _backend and not (
backend == "auto" and params.structured_outputs._backend_was_auto
):
raise ValueError(
"Request-level structured output backend selection is not "
f"supported. The request specified '{_backend}', but vLLM "
f"was initialised with '{backend}'. This error can be "
"resolved by removing '_backend' from the request."
)
else:
params.structured_outputs._backend = backend
# Request content validation
if (
isinstance(params.structured_outputs.choice, list)
and not params.structured_outputs.choice
):
# It is invalid for choice to be an empty list
raise ValueError(
f"Choice '{params.structured_outputs.choice}' cannot be an empty list" # noqa: E501
)
# Reject empty string grammar early to avoid engine-side crashes
if (
isinstance(params.structured_outputs.grammar, str)
and params.structured_outputs.grammar.strip() == ""
):
raise ValueError("structured_outputs.grammar cannot be an empty string")
if backend.startswith("xgrammar"):
# xgrammar with no fallback
validate_xgrammar_grammar(params)
elif backend.startswith("guidance"):
# TODO: ideally we would have the LLTokenizer here as Lark syntax
# allows <|special_token|> and similar, see
# https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md#special-tokens
# Without tokenizer these are disallowed in grammars.
if isinstance(self.tokenizer, MistralTokenizer):
raise ValueError(
"Mistral tokenizer is not supported for the 'guidance' "
"structured output backend. Please use ['xgrammar', 'outlines'] "
"backends or tokenizer_mode='hf' instead."
)
validate_guidance_grammar(params, tokenizer=None)
elif backend == "outlines":
# outlines backend
validate_structured_output_request_outlines(params)
elif backend == "lm-format-enforcer":
# lm format enforcer backend
if isinstance(self.tokenizer, MistralTokenizer):
raise ValueError(
"Mistral tokenizer is not supported for the 'lm-format-enforcer' "
"structured output backend. Please use ['xgrammar', 'outlines'] "
"backends or tokenizer_mode='hf' instead."
)
validate_structured_output_request_lm_format_enforcer(params)
else:
# NOTE: backend must be "auto" here, because we have
# checked supported_backends above.
# In this mode, we set opinionated defaults based on what we think
# will satisfy the most use cases without having to worry about
# this setting. We include fallback behavior here, but not with any
# other setting where a specific backend was specified.
try:
validate_xgrammar_grammar(params)
params.structured_outputs._backend = "xgrammar"
except ValueError:
# The request either failed validation
# or includes some jsonschema feature(s) that
# are not supported in xgrammar.
if isinstance(self.tokenizer, MistralTokenizer):
# Fall back to outlines if the tokenizer is Mistral
validate_structured_output_request_outlines(params)
params.structured_outputs._backend = "outlines"
else:
# Fall back to guidance by default.
validate_guidance_grammar(params, tokenizer=None)
params.structured_outputs._backend = "guidance"
# Remember that this backend was set automatically
params.structured_outputs._backend_was_auto = True
def _maybe_build_mm_uuids(
self,
request_id: str,
prompt: PromptType,
) -> MultiModalUUIDDict | None:
"""Build per-item multimodal hash overrides when enabled. In this case,
multimodal data items are identified by their request id, modality and
index rather than their content.
Returns a dictionary of modality -> list[str] of overrides, or None if
disabled or no multimodal data is present.
"""
def _extract_mm_data(p: PromptType):
if isinstance(p, dict) and "encoder_prompt" in p:
enc = p.get("encoder_prompt")
if isinstance(enc, dict):
return enc.get("multi_modal_data")
return None
if isinstance(p, dict):
return p.get("multi_modal_data")
return None
mm_data = _extract_mm_data(prompt)
if not mm_data:
return None
mm_uuids: dict[str, list[str | None] | str] = {}
for modality, data in mm_data.items():
# Hash each item for embedding inputs.
n = (
len(data)
if isinstance(data, list) or MultiModalDataParser.is_embeddings(data)
else 1
)
mm_uuids[modality] = [f"{request_id}-{modality}-{i}" for i in range(n)]
return mm_uuids
def process_inputs(
self,
request_id: str,
prompt: PromptType,
params: SamplingParams | PoolingParams,
arrival_time: float | None = None,
lora_request: LoRARequest | None = None,
tokenization_kwargs: dict[str, Any] | None = None,
trace_headers: Mapping[str, str] | None = None,
priority: int = 0,
data_parallel_rank: int | None = None,
) -> EngineCoreRequest:
self._validate_lora(lora_request)
self._validate_params(params)
data_parallel_size = self.vllm_config.parallel_config.data_parallel_size
if data_parallel_rank is not None and not (
0 <= data_parallel_rank < data_parallel_size
):
raise ValueError(
f"data_parallel_rank {data_parallel_rank} "
f"is out of range [0, {data_parallel_size})."
)
if arrival_time is None:
arrival_time = time.time()
# Optionally generate multimodal hash overrides to avoid hashing
# multimodal data items by their content as their identifiers.
# NOTE: when users explicitly turn off BOTH prefix caching and input
# processing caching, no multimodal features or embeddings will be
# reused across requests, therefore identifying multimodal data items
# by their content is no longer necessary, and we create uuids with
# request id-modality-index as multimodal hash overrides.
if (
self.model_config.multimodal_config
and self.model_config.multimodal_config.mm_processor_cache_gb == 0
and not self.cache_config.enable_prefix_caching
):
mm_uuids = self._maybe_build_mm_uuids(request_id, prompt)
else:
# Otherwise, use user-provided uuids as multimodal hash overrides
# if provided.
self._validate_multi_modal_uuids(prompt)
if isinstance(prompt, dict):
mm_uuids = cast(
MultiModalUUIDDict | None, prompt.get("multi_modal_uuids")
)
else:
mm_uuids = None
# Process inputs, which includes:
# 1. Tokenize text prompt, with LoRA request if one exists.
# 2. For multimodal models with a merged preprocessor, preprocess
# multimodal data and expand prompt token ids accordingly.
processed_inputs: ProcessorInputs = self.input_preprocessor.preprocess(
prompt,
tokenization_kwargs=tokenization_kwargs,
mm_uuids=mm_uuids,
)
from vllm.platforms import current_platform
current_platform.validate_request(
prompt=prompt,
params=params,
processed_inputs=processed_inputs,
)
eos_token_id = self.input_preprocessor.get_eos_token_id()
encoder_inputs, decoder_inputs = split_enc_dec_inputs(processed_inputs)
self._validate_model_inputs(encoder_inputs, decoder_inputs)
# Mypy can be conservative for TypedDict unions; normalize access.
if decoder_inputs["type"] == "embeds":
prompt_token_ids = None
prompt_embeds = decoder_inputs["prompt_embeds"]
else:
prompt_token_ids = decoder_inputs["prompt_token_ids"]
prompt_embeds = None
sampling_params = None
pooling_params = None
if isinstance(params, SamplingParams):
# TODO: can we avoid cloning here in multiproc case?
sampling_params = params.clone()
# If unset max tokens, then generate up to the max_model_len.
if sampling_params.max_tokens is None:
seq_len = length_from_prompt_token_ids_or_embeds(
prompt_token_ids, prompt_embeds
)
sampling_params.max_tokens = self.model_config.max_model_len - seq_len
sampling_params.update_from_generation_config(
self.generation_config_fields, eos_token_id
)
if self.tokenizer is not None:
sampling_params.update_from_tokenizer(self.tokenizer)
else:
pooling_params = params.clone()
# Multimodal related.
mm_features: list[MultiModalFeatureSpec] | None = None
if decoder_inputs["type"] == "multimodal":
decoder_mm_inputs = decoder_inputs["mm_kwargs"]
decoder_mm_positions = decoder_inputs["mm_placeholders"]
decoder_mm_hashes = decoder_inputs["mm_hashes"]
# Merge and flatten multimodal placeholders, hashes and inputs
# from dictionaries to lists, and sort them by each item's position
# in the input sequence.
sorted_mm_idxs = argsort_mm_positions(decoder_mm_positions)
mm_features = []
for modality, idx in sorted_mm_idxs:
mm_features.append(
MultiModalFeatureSpec(
data=decoder_mm_inputs[modality][idx],
modality=modality,
identifier=decoder_mm_hashes[modality][idx],
mm_position=decoder_mm_positions[modality][idx],
)
)
return EngineCoreRequest(
request_id=request_id,
prompt_token_ids=prompt_token_ids,
prompt_embeds=prompt_embeds,
mm_features=mm_features,
sampling_params=sampling_params,
pooling_params=pooling_params,
eos_token_id=eos_token_id,
arrival_time=arrival_time,
lora_request=lora_request,
cache_salt=decoder_inputs.get("cache_salt"),
priority=priority,
data_parallel_rank=data_parallel_rank,
trace_headers=trace_headers,
)
def _validate_model_inputs(
self, encoder_inputs: SingletonInputs | None, decoder_inputs: SingletonInputs
):
if encoder_inputs is not None:
self._validate_model_input(encoder_inputs, prompt_type="encoder")
self._validate_model_input(decoder_inputs, prompt_type="decoder")
def _validate_model_input(
self,
prompt_inputs: SingletonInputs,
*,
prompt_type: Literal["encoder", "decoder"],
):
model_config = self.model_config
prompt_ids = (
None
if prompt_inputs["type"] == "embeds"
else prompt_inputs["prompt_token_ids"]
)
prompt_embeds = (
prompt_inputs["prompt_embeds"]
if prompt_inputs["type"] == "embeds"
else None
)
prompt_len = length_from_prompt_token_ids_or_embeds(prompt_ids, prompt_embeds)
if not prompt_ids:
if prompt_type == "encoder" and model_config.is_multimodal_model:
pass # Mllama may have empty encoder inputs for text-only data
elif prompt_inputs["type"] == "embeds":
pass # Prompt embeds should not have prompt_ids.
else:
raise ValueError(f"The {prompt_type} prompt cannot be empty")
tokenizer = self.tokenizer
if tokenizer is not None:
max_input_id = max(prompt_ids or [], default=0)
# NOTE: tokenizer.max_token_id is the tokenizers vocab size while
# self.model_config.get_vocab_size() is the models vocab size.
# For Qwen3 models, the language model has extra tokens that do
# not exist in the tokenizer, and vice versa for multimodal
# placeholder tokens in some multimodal models.
# See https://github.com/QwenLM/Qwen3/issues/29#issuecomment-1933720399 # noqa: E501
# and https://github.com/vllm-project/vllm/pull/22471#discussion_r2312251421 # noqa: E501
# Here we take the max of the two to determine if a token id is
# truly out-of-vocabulary.
if max_input_id > max(
tokenizer.max_token_id, self.model_config.get_vocab_size() - 1
):
raise ValueError(f"Token id {max_input_id} is out of vocabulary")
max_prompt_len = self.model_config.max_model_len
if prompt_len > max_prompt_len:
if prompt_type == "encoder" and model_config.is_multimodal_model:
mm_registry = self.input_preprocessor.mm_registry
mm_processor = mm_registry.create_processor(
model_config,
tokenizer=tokenizer,
)
assert isinstance(mm_processor, EncDecMultiModalProcessor)
if mm_processor.pad_dummy_encoder_prompt:
return # Skip encoder length check for Whisper
if model_config.is_multimodal_model:
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens plus multimodal tokens. For image "
"inputs, the number of image tokens depends on the number "
"of images, and possibly their aspect ratios as well."
)
else:
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens."
)
raise ValueError(
f"The {prompt_type} prompt (length {prompt_len}) is "
f"longer than the maximum model length of {max_prompt_len}. "
f"{suggestion}"
)
# TODO: Find out how many placeholder tokens are there so we can
# check that chunked prefill does not truncate them
# max_batch_len = self.scheduler_config.max_num_batched_tokens
if (
prompt_len == max_prompt_len
and prompt_type == "decoder"
and not model_config.is_multimodal_model
and self.model_config.runner_type != "pooling"
):
suggestion = (
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens (prompt + requested output tokens)."
)
raise ValueError(
f"The {prompt_type} prompt (length {prompt_len}) plus the number of "
f"requested output tokens (at least 1) is longer than the maximum "
f"model length of {max_prompt_len}. {suggestion}"
)
def stat_mm_cache(self) -> MultiModalCacheStats | None:
return self.input_preprocessor.stat_mm_cache()
def clear_mm_cache(self) -> None:
self.input_preprocessor.clear_mm_cache()
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")