[Model][LoRA]LoRA support added for MiniCPMV2.6 (#8943)

Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Jee Jee Li 2024-09-30 12:31:55 +08:00 committed by GitHub
parent b6d7392579
commit 8e60afa15e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 49 additions and 880 deletions

View File

@ -65,11 +65,10 @@ class Idefics2VisionEmbeddings(nn.Module):
self.position_embedding = nn.Embedding(self.num_positions,
self.embed_dim)
def forward(
self,
pixel_values: torch.FloatTensor,
patch_attention_mask: torch.BoolTensor,
) -> torch.Tensor:
def forward(self,
pixel_values: torch.FloatTensor,
patch_attention_mask: torch.BoolTensor,
tgt_sizes: Optional[torch.IntTensor] = None) -> torch.Tensor:
batch_size, _, max_im_h, max_im_w = pixel_values.shape
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
@ -84,8 +83,13 @@ class Idefics2VisionEmbeddings(nn.Module):
fill_value=0)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
if tgt_sizes is not None:
nb_patches_h = tgt_sizes[batch_idx][0]
nb_patches_w = tgt_sizes[batch_idx][1]
else:
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h,
@ -287,10 +291,12 @@ class Idefics2VisionTransformer(nn.Module):
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.tensor:
tgt_sizes: Optional[torch.IntTensor] = None,
) -> torch.Tensor:
hidden_states = self.embeddings(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask)
patch_attention_mask=patch_attention_mask,
tgt_sizes=tgt_sizes)
encoder_outputs = self.encoder(hidden_states)
last_hidden_state = self.post_layernorm(encoder_outputs)
return last_hidden_state

View File

@ -31,17 +31,15 @@ import torch
import torch.types
from PIL import Image
from torch import nn
from torch.nn.init import trunc_normal_
from transformers import PretrainedConfig
from typing_extensions import NotRequired
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig, LoRAConfig, MultiModalConfig
from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.resampler import (Resampler2,
from vllm.model_executor.layers.resampler import (BaseResampler, Resampler2,
get_2d_sincos_pos_embed)
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
@ -106,58 +104,6 @@ class MiniCPMVImagePixelInputs(TypedDict):
DEFAULT_LN = partial(nn.LayerNorm, eps=1e-6)
class BaseResampler(nn.Module):
"""
A 2D perceiver-resampler network with one cross attention layers by
(grid_size**2) learnable queries and 2d sincos pos_emb
Outputs:
A tensor with the shape of (grid_size**2, embed_dim)
"""
def __init__(
self,
num_queries: int,
embed_dim: int,
num_heads: int,
kv_dim: Optional[int] = None,
norm_layer: Callable[[int], nn.LayerNorm] = DEFAULT_LN,
) -> None:
super().__init__()
self.num_queries = num_queries
self.embed_dim = embed_dim
self.num_heads = num_heads
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
trunc_normal_(self.query, std=0.02)
if kv_dim is not None and kv_dim != embed_dim:
self.kv_proj = ReplicatedLinear(kv_dim, embed_dim, bias=False)
else:
# Maintain the same return value with ReplicatedLinear.forward
self.kv_proj = lambda *args, **kwargs: (
nn.Identity()(*args, **kwargs),
None,
)
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
self.ln_q = norm_layer(embed_dim)
self.ln_kv = norm_layer(embed_dim)
self.ln_post = norm_layer(embed_dim)
self.proj = nn.Parameter(
(embed_dim**-0.5) * torch.randn(embed_dim, embed_dim))
def _init_weights(self, m: nn.Module) -> None:
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _repeat(self, query, N: int):
return query.unsqueeze(1).repeat(1, N, 1)
class Resampler2_5(BaseResampler):
def __init__(
@ -869,7 +815,35 @@ class MiniCPMV2_5(MiniCPMVBaseModel, SupportsLoRA):
return "resampler" in name
class MiniCPMV2_6(MiniCPMVBaseModel):
class MiniCPMV2_6(MiniCPMVBaseModel, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
# vision encoder
"fc1",
"fc2",
"out_proj",
# language model
"qkv_proj", # same name with vision encoder
"o_proj",
"gate_up_proj",
"down_proj",
# resampler
"kv_proj",
]
embedding_modules = {}
embedding_padding_modules = []
def __init__(
self,
@ -894,15 +868,8 @@ class MiniCPMV2_6(MiniCPMVBaseModel):
name="model")
def init_vision_module(self) -> nn.Module:
# A custom version of SiglipVisionTransformer, won't work with TP
from vllm.model_executor.models.na_vit import SiglipVisionTransformer
if self.config._attn_implementation == "flash_attention_2":
self.config.vision_config._attn_implementation = "flash_attention_2"
else:
# not support sdpa
self.config.vision_config._attn_implementation = "eager"
model = SiglipVisionTransformer(self.config.vision_config)
model = Idefics2VisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
return model
@ -928,7 +895,7 @@ class MiniCPMV2_6(MiniCPMVBaseModel):
pixel_values,
patch_attention_mask=patch_attn_mask,
tgt_sizes=tgt_sizes,
).last_hidden_state
)
return vision_embedding
def get_vision_hidden_states(
@ -960,12 +927,12 @@ class MiniCPMV2_6(MiniCPMVBaseModel):
all_pixel_values.type(dtype),
patch_attention_mask=patch_attn_mask,
tgt_sizes=tgt_sizes,
).last_hidden_state
)
return self.resampler(vision_embedding, tgt_sizes)
def is_default_weight_loading(self, name: str) -> bool:
return "resampler" in name or "vpm" in name
return "resampler" in name
_SUPPORT_VERSION = {

View File

@ -1,804 +0,0 @@
import logging
import math
import os
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import (BaseModelOutput,
BaseModelOutputWithPooling)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (ModelOutput, is_flash_attn_2_available,
replace_return_docstrings)
logger = logging.getLogger("vllm")
# For Siglip: copied from
# HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
# Remove hints as there's little possibility to change these code.
class SiglipVisionConfig(PretrainedConfig):
model_type = "siglip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str,
os.PathLike],
**kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from SiglipConfig
if config_dict.get("model_type") == "siglip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(
cls,
"model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
"You are using a model of type %s to "
"instantiate a model of type %s. "
"This is not supported for all configurations"
"of models and can yield errors.", config_dict['model_type'],
cls.model_type)
return cls.from_dict(config_dict, **kwargs)
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/siglip-base-patch16-224",
# See all SigLIP models at https://huggingface.co/models?filter=siglip
]
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import pad_input # noqa
from flash_attn.bert_padding import index_first_axis, unpad_input
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
def _trunc_normal_(tensor, mean, std, a, b):
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l_ = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l_ - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
if tensor.dtype in [torch.float16, torch.bfloat16]:
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
og_dtype = tensor.dtype
tensor = tensor.to(torch.float32)
tensor.erfinv_()
tensor = tensor.to(og_dtype)
else:
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
if tensor.dtype == torch.float16:
# The `clamp_` op is not (yet?) defined in float16+cpu
tensor = tensor.to(torch.float32)
tensor.clamp_(min=a, max=b)
tensor = tensor.to(torch.float16)
else:
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(tensor: torch.Tensor,
mean: float = 0.0,
std: float = 1.0,
a: float = -2.0,
b: float = 2.0) -> torch.Tensor:
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
class SiglipVisionModelOutput(ModelOutput):
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches_per_side = self.image_size // self.patch_size
self.num_patches = self.num_patches_per_side**2
self.num_positions = self.num_patches
self.position_embedding = nn.Embedding(self.num_positions,
self.embed_dim)
def forward(self,
pixel_values: torch.FloatTensor,
patch_attention_mask: torch.BoolTensor,
tgt_sizes: Optional[torch.IntTensor] = None) -> torch.Tensor:
batch_size = pixel_values.size(0)
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
max_nb_patches_h, max_nb_patches_w = (max_im_h // self.patch_size,
max_im_w // self.patch_size)
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0,
1 / self.num_patches_per_side)
position_ids = torch.full(
size=(
batch_size,
max_nb_patches_h * max_nb_patches_w,
),
fill_value=0,
)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
if tgt_sizes is not None:
nb_patches_h = tgt_sizes[batch_idx][0]
nb_patches_w = tgt_sizes[batch_idx][1]
else:
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h,
boundaries,
right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w,
boundaries,
right=True)
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side +
bucket_coords_w).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
class SiglipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
"embed_dim must be divisible by num_heads (got `embed_dim`: "
f"{self.embed_dim} and `num_heads`:"
f" {self.num_heads}).")
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) * self.scale
if attn_weights.size() != (batch_size, self.num_heads, q_len,
k_v_seq_len):
raise ValueError(
"Attention weights should be of size "
f"{(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}")
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
"Attention mask should be of size "
f"{(batch_size, 1, q_len, k_v_seq_len)}",
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(
query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len,
self.head_dim):
raise ValueError(
"`attn_output` should be of size "
f"{(batch_size, self.num_heads, q_len, self.head_dim)}, "
"but is"
f" {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class SiglipFlashAttention2(SiglipAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False # Hack to make sure we don't use a causal mask
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(
kv_seq_len, self.layer_idx)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.dropout if self.training else 0.0
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning(
"The input hidden states seems to be "
"silently casted in float32, "
"this might be related to the fact "
"you have upcasted embedding or layer norm layers in float32. "
"We will cast back the input in"
" %s.", target_dtype)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate)
attn_output = attn_output.reshape(bsz, q_len,
self.embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
def _flash_attention_forward(self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None):
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
(query_states, key_states, value_states, indices_q, cu_seq_lens,
max_seq_lens) = self._upad_input(query_states, key_states,
value_states, attention_mask,
query_length)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size,
query_length)
else:
attn_output = flash_attn_func(query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask,
query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
head_dim), indices_k)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
head_dim), indices_k)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
(query_layer, indices_q, cu_seqlens_q,
max_seqlen_in_batch_q) = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
class SiglipMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer
# with CLIP->Siglip
class SiglipEncoderLayer(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self._use_flash_attention_2 = (
config._attn_implementation == "flash_attention_2")
self.self_attn = (SiglipAttention(config)
if not self._use_flash_attention_2 else
SiglipFlashAttention2(config))
self.layer_norm1 = nn.LayerNorm(self.embed_dim,
eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim,
eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, )
if output_attentions:
outputs += (attn_weights, )
return outputs
class SiglipPreTrainedModel(PreTrainedModel):
config_class = SiglipVisionConfig
base_model_prefix = "siglip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SiglipVisionEmbeddings):
width = self.config.hidden_size
nn.init.normal_(module.position_embedding.weight,
std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, SiglipAttention):
nn.init.normal_(module.q_proj.weight)
nn.init.normal_(module.k_proj.weight)
nn.init.normal_(module.v_proj.weight)
nn.init.normal_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, SiglipMLP):
nn.init.normal_(module.fc1.weight)
nn.init.normal_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder
# with CLIP->Siglip
class SiglipEncoder(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([
SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)
])
self.gradient_checkpointing = False
# Ignore copy
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None \
else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states, )
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1], )
if output_hidden_states:
encoder_states = encoder_states + (hidden_states, )
if not return_dict:
return tuple(
v for v in [hidden_states, encoder_states, all_attentions]
if v is not None)
return BaseModelOutput(last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions)
class SiglipVisionTransformer(SiglipPreTrainedModel):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
_supports_flash_attn_2 = True
def __init__(self, config: SiglipVisionConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
self._use_flash_attention_2 = (
config._attn_implementation == "flash_attention_2")
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embedding
@replace_return_docstrings(output_type=BaseModelOutputWithPooling,
config_class=SiglipVisionConfig)
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
tgt_sizes: Optional[torch.IntTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None \
else self.config.use_return_dict
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_attention_mask = torch.ones(
size=(
batch_size,
pixel_values.size(2) // self.config.patch_size,
pixel_values.size(3) // self.config.patch_size,
),
dtype=torch.bool,
device=pixel_values.device,
)
hidden_states = self.embeddings(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
tgt_sizes=tgt_sizes)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s
# (i.e. attending to the whole sequence),
# avoiding passing the attention_mask,
# which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
attention_mask = None
else:
attention_mask = (_prepare_4d_attention_mask(
patch_attention_mask, hidden_states.dtype)
if not self._use_flash_attention_2 else
patch_attention_mask)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
return (last_hidden_state, None) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=None,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)