[Misc] refactor prompt embedding examples (#18405)

Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
Reid 2025-05-20 23:26:12 +08:00 committed by GitHub
parent be48360c1f
commit 8f55962a7f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 191 additions and 102 deletions

View File

@ -20,59 +20,7 @@ To input multi-modal data, follow this schema in {class}`vllm.inputs.EmbedsPromp
You can pass prompt embeddings from Hugging Face Transformers models to the `'prompt_embeds'` field of the prompt embedding dictionary, as shown in the following examples:
```python
from vllm import LLM
import transformers
model_name = "meta-llama/Llama-3.2-1B-Instruct"
# Transformers
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
transformers_model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
llm = LLM(model=model_name, enable_prompt_embeds=True)
# Refer to the HuggingFace repo for the correct format to use
chat = [{"role": "user", "content": "Please tell me about the capital of France."}]
token_ids = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors='pt')
embedding_layer = transformers_model.get_input_embeddings()
prompt_embeds = embedding_layer(token_ids).squeeze(0)
# Single prompt inference
outputs = llm.generate({
"prompt_embeds": prompt_embeds,
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
# Batch inference
chats = [
[{"role": "user", "content": "Please tell me about the capital of France."}],
[{"role": "user", "content": "When is the day longest during the year?"}],
[{"role": "user", "content": "Where is bigger, the moon or the sun?"}]
]
token_ids_list = [
tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors='pt') for chat in chats
]
prompt_embeds_list = [embedding_layer(token_ids).squeeze(0) for token_ids in token_ids_list]
outputs = llm.generate(
[
{
"prompt_embeds": prompt_embeds,
} for prompt_embeds in prompt_embeds_list
]
)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
```
<gh-file:examples/offline_inference/prompt_embed_inference.py>
## Online Serving
@ -93,52 +41,4 @@ vllm serve meta-llama/Llama-3.2-1B-Instruct --task generate \
Then, you can use the OpenAI client as follows:
```python
from openai import OpenAI
import transformers
import torch
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model_name = "meta-llama/Llama-3.2-1B-Instruct"
# Transformers
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
transformers_model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
# Refer to the HuggingFace repo for the correct format to use
chat = [{"role": "user", "content": "Please tell me about the capital of France."}]
token_ids = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors='pt')
embedding_layer = transformers_model.get_input_embeddings()
prompt_embeds = embedding_layer(token_ids).squeeze(0)
# Prompt embeddings
buffer = io.BytesIO()
torch.save(prompt_embeds, buffer)
buffer.seek(0)
binary_data = buffer.read()
encoded_embeds = base64.b64encode(binary_data).decode('utf-8')
completion = client_with_prompt_embeds.completions.create(
model=model_name,
# NOTE: The OpenAI client does not allow `None` as an input to
# `prompt`. Use an empty string if you have no text prompts.
prompt="",
max_tokens=5,
temperature=0.0,
# NOTE: The OpenAI client allows passing in extra JSON body via the
# `extra_body` argument.
extra_body={"prompt_embeds": encoded_embeds}
)
print(completion.choices[0].text)
```
<gh-file:examples/online_serving/prompt_embed_inference_with_openai_client.py>

View File

@ -0,0 +1,103 @@
# SPDX-License-Identifier: Apache-2.0
"""
Demonstrates how to generate prompt embeddings using
Hugging Face Transformers and use them as input to vLLM
for both single and batch inference.
Model: meta-llama/Llama-3.2-1B-Instruct
Note: This model is gated on Hugging Face Hub.
You must request access to use it:
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
Requirements:
- vLLM
- transformers
Run:
python examples/offline_inference/prompt_embed_inference.py
"""
import torch
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizer)
from vllm import LLM
def init_tokenizer_and_llm(model_name: str):
tokenizer = AutoTokenizer.from_pretrained(model_name)
transformers_model = AutoModelForCausalLM.from_pretrained(model_name)
embedding_layer = transformers_model.get_input_embeddings()
llm = LLM(model=model_name, enable_prompt_embeds=True)
return tokenizer, embedding_layer, llm
def get_prompt_embeds(chat: list[dict[str,
str]], tokenizer: PreTrainedTokenizer,
embedding_layer: torch.nn.Module):
token_ids = tokenizer.apply_chat_template(chat,
add_generation_prompt=True,
return_tensors='pt')
prompt_embeds = embedding_layer(token_ids).squeeze(0)
return prompt_embeds
def single_prompt_inference(llm: LLM, tokenizer: PreTrainedTokenizer,
embedding_layer: torch.nn.Module):
chat = [{
"role": "user",
"content": "Please tell me about the capital of France."
}]
prompt_embeds = get_prompt_embeds(chat, tokenizer, embedding_layer)
outputs = llm.generate({
"prompt_embeds": prompt_embeds,
})
print("\n[Single Inference Output]")
print("-" * 30)
for o in outputs:
print(o.outputs[0].text)
print("-" * 30)
def batch_prompt_inference(llm: LLM, tokenizer: PreTrainedTokenizer,
embedding_layer: torch.nn.Module):
chats = [[{
"role": "user",
"content": "Please tell me about the capital of France."
}],
[{
"role": "user",
"content": "When is the day longest during the year?"
}],
[{
"role": "user",
"content": "Where is bigger, the moon or the sun?"
}]]
prompt_embeds_list = [
get_prompt_embeds(chat, tokenizer, embedding_layer) for chat in chats
]
outputs = llm.generate([{
"prompt_embeds": embeds
} for embeds in prompt_embeds_list])
print("\n[Batch Inference Outputs]")
print("-" * 30)
for i, o in enumerate(outputs):
print(f"Q{i+1}: {chats[i][0]['content']}")
print(f"A{i+1}: {o.outputs[0].text}\n")
print("-" * 30)
def main():
model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer, embedding_layer, llm = init_tokenizer_and_llm(model_name)
single_prompt_inference(llm, tokenizer, embedding_layer)
batch_prompt_inference(llm, tokenizer, embedding_layer)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,86 @@
# SPDX-License-Identifier: Apache-2.0
"""
vLLM OpenAI-Compatible Client with Prompt Embeddings
This script demonstrates how to:
1. Generate prompt embeddings using Hugging Face Transformers
2. Encode them in base64 format
3. Send them to a vLLM server via the OpenAI-compatible Completions API
Run the vLLM server first:
vllm serve meta-llama/Llama-3.2-1B-Instruct \
--task generate \
--max-model-len 4096 \
--enable-prompt-embeds
Run the client:
python examples/online_serving/prompt_embed_inference_with_openai_client.py
Model: meta-llama/Llama-3.2-1B-Instruct
Note: This model is gated on Hugging Face Hub.
You must request access to use it:
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
Dependencies:
- transformers
- torch
- openai
"""
import base64
import io
import torch
import transformers
from openai import OpenAI
def main():
client = OpenAI(
api_key="EMPTY",
base_url="http://localhost:8000/v1",
)
model_name = "meta-llama/Llama-3.2-1B-Instruct"
# Transformers
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
transformers_model = transformers.AutoModelForCausalLM.from_pretrained(
model_name)
# Refer to the HuggingFace repo for the correct format to use
chat = [{
"role": "user",
"content": "Please tell me about the capital of France."
}]
token_ids = tokenizer.apply_chat_template(chat,
add_generation_prompt=True,
return_tensors='pt')
embedding_layer = transformers_model.get_input_embeddings()
prompt_embeds = embedding_layer(token_ids).squeeze(0)
# Prompt embeddings
buffer = io.BytesIO()
torch.save(prompt_embeds, buffer)
buffer.seek(0)
binary_data = buffer.read()
encoded_embeds = base64.b64encode(binary_data).decode('utf-8')
completion = client.completions.create(
model=model_name,
# NOTE: The OpenAI client does not allow `None` as an input to
# `prompt`. Use an empty string if you have no text prompts.
prompt="",
max_tokens=5,
temperature=0.0,
# NOTE: The OpenAI client allows passing in extra JSON body via the
# `extra_body` argument.
extra_body={"prompt_embeds": encoded_embeds})
print("-" * 30)
print(completion.choices[0].text)
print("-" * 30)
if __name__ == "__main__":
main()