diff --git a/tests/distributed/test_pipeline_parallel.py b/tests/distributed/test_pipeline_parallel.py index 073b362b64749..aa28ed9ce25e5 100644 --- a/tests/distributed/test_pipeline_parallel.py +++ b/tests/distributed/test_pipeline_parallel.py @@ -382,7 +382,6 @@ def test_tp_language_generation( test_options: PPTestOptions, num_gpus_available, ): - pytest.skip("Skipping the test until V1 passes it.") _compare_tp(model_id, parallel_setup, distributed_backend, @@ -410,7 +409,6 @@ def test_tp_language_embedding( test_options: PPTestOptions, num_gpus_available, ): - pytest.skip("Skipping the test until V1 passes it.") _compare_tp(model_id, parallel_setup, distributed_backend, @@ -438,7 +436,6 @@ def test_tp_multimodal_generation( test_options: PPTestOptions, num_gpus_available, ): - pytest.skip("Skipping the test until V1 passes it.") _compare_tp(model_id, parallel_setup, distributed_backend, diff --git a/vllm/model_executor/models/granite.py b/vllm/model_executor/models/granite.py index 795b38e724eab..2c619396e6c0c 100644 --- a/vllm/model_executor/models/granite.py +++ b/vllm/model_executor/models/granite.py @@ -308,13 +308,11 @@ class GraniteModel(nn.Module): hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) - residual = None hidden_states *= self.config.embedding_multiplier else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] - residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states = layer(positions, hidden_states) @@ -322,7 +320,6 @@ class GraniteModel(nn.Module): if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, - "residual": residual }) hidden_states = self.norm(hidden_states) @@ -475,10 +472,6 @@ class GraniteForCausalLM(nn.Module, SupportsLoRA, SupportsPP): torch.zeros((batch_size, self.config.hidden_size), dtype=dtype, device=device), - "residual": - torch.zeros((batch_size, self.config.hidden_size), - dtype=dtype, - device=device), }) def load_weights(self, weights: Iterable[tuple[str, diff --git a/vllm/model_executor/models/granitemoe.py b/vllm/model_executor/models/granitemoe.py index 07200fef4799d..47ac22c4aeaa5 100644 --- a/vllm/model_executor/models/granitemoe.py +++ b/vllm/model_executor/models/granitemoe.py @@ -298,17 +298,14 @@ class GraniteMoeModel(nn.Module): else: hidden_states = self.get_input_embeddings(input_ids) hidden_states *= self.embedding_multiplier - residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] - residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states = layer(positions, hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, - "residual": residual }) hidden_states = self.norm(hidden_states) return hidden_states @@ -523,10 +520,6 @@ class GraniteMoeForCausalLM(nn.Module, SupportsLoRA, SupportsPP): torch.zeros((batch_size, self.config.hidden_size), dtype=dtype, device=device), - "residual": - torch.zeros((batch_size, self.config.hidden_size), - dtype=dtype, - device=device), }) def load_weights(self, weights: Iterable[tuple[str, diff --git a/vllm/model_executor/models/granitemoeshared.py b/vllm/model_executor/models/granitemoeshared.py index a5d118f084e6c..b434822bff0a9 100644 --- a/vllm/model_executor/models/granitemoeshared.py +++ b/vllm/model_executor/models/granitemoeshared.py @@ -195,17 +195,14 @@ class GraniteMoeSharedModel(nn.Module): else: hidden_states = self.get_input_embeddings(input_ids) hidden_states *= self.embedding_multiplier - residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] - residual = intermediate_tensors["residual"] for layer in islice(self.layers, self.start_layer, self.end_layer): hidden_states = layer(positions, hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, - "residual": residual }) hidden_states = self.norm(hidden_states) return hidden_states @@ -323,10 +320,6 @@ class GraniteMoeSharedForCausalLM(nn.Module, SupportsLoRA, SupportsPP): torch.zeros((batch_size, self.config.hidden_size), dtype=dtype, device=device), - "residual": - torch.zeros((batch_size, self.config.hidden_size), - dtype=dtype, - device=device), }) def load_weights(self, weights: Iterable[tuple[str,