[CI/Build] Fix LoRA test (#19350)

Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
Jee Jee Li 2025-06-09 17:52:10 +08:00 committed by GitHub
parent 0eca5eacd0
commit 95a6568b5c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 11 additions and 63 deletions

View File

@ -164,11 +164,6 @@ def mixtral_lora_files():
return snapshot_download(repo_id="SangBinCho/mixtral-lora") return snapshot_download(repo_id="SangBinCho/mixtral-lora")
@pytest.fixture(scope="session")
def gemma_lora_files():
return snapshot_download(repo_id="wskwon/gemma-7b-test-lora")
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def chatglm3_lora_files(): def chatglm3_lora_files():
return snapshot_download(repo_id="jeeejeee/chatglm3-text2sql-spider") return snapshot_download(repo_id="jeeejeee/chatglm3-text2sql-spider")

View File

@ -4,9 +4,6 @@ import subprocess
import sys import sys
from typing import Union from typing import Union
import pytest
import ray
import vllm import vllm
from vllm import LLM from vllm import LLM
from vllm.lora.request import LoRARequest from vllm.lora.request import LoRARequest
@ -121,37 +118,6 @@ def test_llama_lora(sql_lora_files):
generate_and_test(llm, sql_lora_files) generate_and_test(llm, sql_lora_files)
# Skipping for v1 as v1 doesn't have a good way to expose the num_gpu_blocks
# used by the engine yet.
@pytest.mark.skip_v1
@create_new_process_for_each_test()
def test_llama_lora_warmup(sql_lora_files):
"""Test that the LLM initialization works with a warmup LORA path and
is more conservative"""
@ray.remote(num_gpus=1)
def get_num_gpu_blocks_lora():
llm = vllm.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16)
num_gpu_blocks_lora_warmup = llm.llm_engine.cache_config.num_gpu_blocks
return num_gpu_blocks_lora_warmup
@ray.remote(num_gpus=1)
def get_num_gpu_blocks_no_lora():
llm = vllm.LLM(MODEL_PATH, max_num_seqs=16)
num_gpu_blocks_no_lora_warmup = (
llm.llm_engine.cache_config.num_gpu_blocks)
return num_gpu_blocks_no_lora_warmup
num_gpu_blocks_lora_warmup = ray.get(get_num_gpu_blocks_lora.remote())
num_gpu_blocks_no_lora_warmup = ray.get(
get_num_gpu_blocks_no_lora.remote())
assert num_gpu_blocks_lora_warmup < num_gpu_blocks_no_lora_warmup, (
"The warmup with lora should be more "
"conservative than without lora, therefore the number of "
"memory blocks for the KV cache should be "
"less when using lora than when not using lora")
@multi_gpu_test(num_gpus=4) @multi_gpu_test(num_gpus=4)
@create_new_process_for_each_test() @create_new_process_for_each_test()
def test_llama_lora_tp4(sql_lora_files): def test_llama_lora_tp4(sql_lora_files):

View File

@ -15,13 +15,6 @@ MODEL_PATH = "meta-llama/Llama-2-7b-hf"
LORA_MODULE_PATH = "yard1/llama-2-7b-sql-lora-test" LORA_MODULE_PATH = "yard1/llama-2-7b-sql-lora-test"
LORA_RANK = 8 LORA_RANK = 8
# @pytest.fixture(autouse=True)
# def v1(run_with_both_engines_lora):
# # Simple autouse wrapper to run both engines for each test
# # This can be promoted up to conftest.py to run for every
# # test in a package
# pass
def make_lora_request(lora_id: int): def make_lora_request(lora_id: int):
return LoRARequest(lora_name=f"{lora_id}", return LoRARequest(lora_name=f"{lora_id}",

View File

@ -11,14 +11,6 @@ MODEL_PATH = "microsoft/phi-2"
PROMPT_TEMPLATE = "### Instruct: {sql_prompt}\n\n### Context: {context}\n\n### Output:" # noqa: E501 PROMPT_TEMPLATE = "### Instruct: {sql_prompt}\n\n### Context: {context}\n\n### Output:" # noqa: E501
@pytest.fixture(autouse=True)
def v1(run_with_both_engines_lora):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]: def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
prompts = [ prompts = [
PROMPT_TEMPLATE.format( PROMPT_TEMPLATE.format(
@ -59,7 +51,7 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
# Skipping for V1 for now as we are hitting, # Skipping for V1 for now as we are hitting,
# "Head size 80 is not supported by FlashAttention." error. # "Head size 80 is not supported by FlashAttention." error.
@pytest.mark.skip_v1 @pytest.mark.skip(reason="Head size 80 is not supported by FlashAttention")
def test_phi2_lora(phi2_lora_files): def test_phi2_lora(phi2_lora_files):
# We enable enforce_eager=True here to reduce VRAM usage for lora-test CI, # We enable enforce_eager=True here to reduce VRAM usage for lora-test CI,
# Otherwise, the lora-test will fail due to CUDA OOM. # Otherwise, the lora-test will fail due to CUDA OOM.

View File

@ -16,6 +16,8 @@ from vllm.lora.request import LoRARequest
from vllm.v1.worker.gpu_worker import Worker as V1Worker from vllm.v1.worker.gpu_worker import Worker as V1Worker
from vllm.worker.worker import Worker from vllm.worker.worker import Worker
NUM_LORAS = 16
@patch.dict(os.environ, {"RANK": "0"}) @patch.dict(os.environ, {"RANK": "0"})
def test_worker_apply_lora(sql_lora_files): def test_worker_apply_lora(sql_lora_files):
@ -58,12 +60,12 @@ def test_worker_apply_lora(sql_lora_files):
device_config=DeviceConfig("cuda"), device_config=DeviceConfig("cuda"),
cache_config=CacheConfig( cache_config=CacheConfig(
block_size=16, block_size=16,
gpu_memory_utilization=1.0,
swap_space=0, swap_space=0,
cache_dtype="auto", cache_dtype="auto",
), ),
lora_config=LoRAConfig(max_lora_rank=8, max_cpu_loras=32, lora_config=LoRAConfig(max_lora_rank=8,
max_loras=32), max_cpu_loras=NUM_LORAS,
max_loras=NUM_LORAS),
) )
worker = worker_cls( worker = worker_cls(
vllm_config=vllm_config, vllm_config=vllm_config,
@ -78,9 +80,9 @@ def test_worker_apply_lora(sql_lora_files):
set_active_loras(worker, []) set_active_loras(worker, [])
assert worker.list_loras() == set() assert worker.list_loras() == set()
n_loras = 32
lora_requests = [ lora_requests = [
LoRARequest(str(i + 1), i + 1, sql_lora_files) for i in range(n_loras) LoRARequest(str(i + 1), i + 1, sql_lora_files)
for i in range(NUM_LORAS)
] ]
set_active_loras(worker, lora_requests) set_active_loras(worker, lora_requests)
@ -89,12 +91,12 @@ def test_worker_apply_lora(sql_lora_files):
for lora_request in lora_requests for lora_request in lora_requests
} }
for i in range(32): for i in range(NUM_LORAS):
random.seed(i) random.seed(i)
iter_lora_requests = random.choices(lora_requests, iter_lora_requests = random.choices(lora_requests,
k=random.randint(1, n_loras)) k=random.randint(1, NUM_LORAS))
random.shuffle(iter_lora_requests) random.shuffle(iter_lora_requests)
iter_lora_requests = iter_lora_requests[:-random.randint(0, n_loras)] iter_lora_requests = iter_lora_requests[:-random.randint(0, NUM_LORAS)]
set_active_loras(worker, lora_requests) set_active_loras(worker, lora_requests)
assert worker.list_loras().issuperset( assert worker.list_loras().issuperset(
{lora_request.lora_int_id {lora_request.lora_int_id