mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 06:55:01 +08:00
[gpt-oss] Support streaming in response API (#22431)
Signed-off-by: Chen Zhang <zhangch99@outlook.com>
This commit is contained in:
parent
458e74eb90
commit
95a935fc48
@ -2,6 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from contextlib import AsyncExitStack
|
||||
@ -10,10 +11,22 @@ from http import HTTPStatus
|
||||
from typing import Any, Callable, Final, Optional, Union
|
||||
|
||||
import jinja2
|
||||
import openai.types.responses as openai_responses_types
|
||||
from fastapi import Request
|
||||
from openai.types.responses import (ResponseFunctionToolCall,
|
||||
ResponseOutputItem, ResponseOutputMessage,
|
||||
ResponseOutputText, ResponseReasoningItem)
|
||||
from openai import BaseModel
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from openai.types.responses import (ResponseContentPartDoneEvent,
|
||||
ResponseCreatedEvent,
|
||||
ResponseFunctionToolCall,
|
||||
ResponseInProgressEvent,
|
||||
ResponseOutputItem,
|
||||
ResponseOutputItemDoneEvent,
|
||||
ResponseOutputMessage, ResponseOutputText,
|
||||
ResponseReasoningItem,
|
||||
ResponseReasoningTextDeltaEvent,
|
||||
ResponseReasoningTextDoneEvent)
|
||||
# yapf: enable
|
||||
from openai.types.responses.response_reasoning_item import (
|
||||
Content as ResponseReasoningTextContent)
|
||||
from openai_harmony import Message as OpenAIHarmonyMessage
|
||||
@ -330,8 +343,15 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
return response
|
||||
|
||||
if request.stream:
|
||||
raise NotImplementedError(
|
||||
"Streaming responses are not supported")
|
||||
return self.responses_stream_generator(
|
||||
request,
|
||||
sampling_params,
|
||||
result_generator,
|
||||
context,
|
||||
model_name,
|
||||
tokenizer,
|
||||
request_metadata,
|
||||
)
|
||||
|
||||
try:
|
||||
return await self.responses_full_generator(
|
||||
@ -744,3 +764,423 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
"starting the vLLM server."),
|
||||
status_code=HTTPStatus.BAD_REQUEST,
|
||||
)
|
||||
|
||||
async def responses_stream_generator(
|
||||
self,
|
||||
request: ResponsesRequest,
|
||||
sampling_params: SamplingParams,
|
||||
result_generator: AsyncIterator[Optional[ConversationContext]],
|
||||
context: ConversationContext,
|
||||
model_name: str,
|
||||
tokenizer: AnyTokenizer,
|
||||
request_metadata: RequestResponseMetadata,
|
||||
created_time: Optional[int] = None,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
# TODO:
|
||||
# 1. Handle disconnect
|
||||
|
||||
if not isinstance(context, StreamingHarmonyContext):
|
||||
raise NotImplementedError(
|
||||
"Streaming is not supported for responses API without Harmony."
|
||||
)
|
||||
|
||||
created_time = created_time or int(time.time())
|
||||
|
||||
sequence_number = 0
|
||||
|
||||
def _send_event(event: BaseModel):
|
||||
nonlocal sequence_number
|
||||
# Set sequence_number if the event has this attribute
|
||||
if hasattr(event, 'sequence_number'):
|
||||
event.sequence_number = sequence_number
|
||||
sequence_number += 1
|
||||
# Get event type from the event's type field if it exists
|
||||
event_type = getattr(event, 'type', 'unknown')
|
||||
return (f"event: {event_type}\n"
|
||||
f"data: {event.model_dump_json(indent=None)}\n\n")
|
||||
|
||||
current_content_index = 0 # FIXME: this number is never changed
|
||||
current_output_index = 0
|
||||
current_item_id = "" # FIXME: this number is never changed
|
||||
sent_output_item_added = False
|
||||
|
||||
initial_response = ResponsesResponse.from_request(
|
||||
request,
|
||||
sampling_params,
|
||||
model_name=model_name,
|
||||
created_time=created_time,
|
||||
output=[],
|
||||
status="in_progress",
|
||||
usage=None,
|
||||
).model_dump()
|
||||
yield _send_event(
|
||||
ResponseCreatedEvent(
|
||||
type="response.created",
|
||||
sequence_number=-1,
|
||||
response=initial_response,
|
||||
))
|
||||
yield _send_event(
|
||||
ResponseInProgressEvent(
|
||||
type="response.in_progress",
|
||||
sequence_number=-1,
|
||||
response=initial_response,
|
||||
))
|
||||
|
||||
async for ctx in result_generator:
|
||||
|
||||
assert isinstance(ctx, StreamingHarmonyContext)
|
||||
|
||||
if ctx.is_expecting_start():
|
||||
current_output_index += 1
|
||||
sent_output_item_added = False
|
||||
|
||||
if len(ctx.parser.messages) > 0:
|
||||
previous_item = ctx.parser.messages[-1]
|
||||
if previous_item.recipient is not None:
|
||||
# Deal with tool call here
|
||||
pass
|
||||
elif previous_item.channel == "analysis":
|
||||
reasoning_item = ResponseReasoningItem(
|
||||
type="reasoning",
|
||||
content=[
|
||||
ResponseReasoningTextContent(
|
||||
text=previous_item.content[0].text),
|
||||
],
|
||||
status="completed",
|
||||
)
|
||||
yield _send_event(
|
||||
ResponseReasoningTextDoneEvent(
|
||||
type="response.reasoning_text.done",
|
||||
item_id=current_item_id,
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
content_index=current_content_index,
|
||||
text=previous_item.content[0].text,
|
||||
))
|
||||
yield _send_event(
|
||||
ResponseContentPartDoneEvent(
|
||||
type="response.content_part.done",
|
||||
item_id=current_item_id,
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
content_index=current_content_index,
|
||||
part=reasoning_item,
|
||||
))
|
||||
yield _send_event(
|
||||
ResponseOutputItemDoneEvent(
|
||||
type="response.output_item.done",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=reasoning_item,
|
||||
))
|
||||
elif previous_item.channel == "final":
|
||||
text_content = ResponseOutputText(
|
||||
type="output_text",
|
||||
text=previous_item.content[0].text,
|
||||
annotations=[],
|
||||
)
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseTextDoneEvent(
|
||||
type="response.output_text.done",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
content_index=current_content_index,
|
||||
text=previous_item.content[0].text,
|
||||
logprobs=[],
|
||||
item_id=current_item_id,
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseContentPartDoneEvent(
|
||||
type="response.content_part.done",
|
||||
sequence_number=-1,
|
||||
item_id=current_item_id,
|
||||
output_index=current_output_index,
|
||||
content_index=current_content_index,
|
||||
part=text_content,
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseOutputItemDoneEvent(
|
||||
type="response.output_item.done",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=ResponseOutputMessage(
|
||||
id=current_item_id,
|
||||
type="message",
|
||||
role="assistant",
|
||||
content=[text_content],
|
||||
status="completed",
|
||||
),
|
||||
))
|
||||
|
||||
if ctx.parser.last_content_delta:
|
||||
if (ctx.parser.current_channel == "final"
|
||||
and ctx.parser.current_recipient is None):
|
||||
if not sent_output_item_added:
|
||||
sent_output_item_added = True
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseOutputItemAddedEvent(
|
||||
type="response.output_item.added",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=openai_responses_types.
|
||||
ResponseOutputMessage(
|
||||
id=current_item_id,
|
||||
type="message",
|
||||
role="assistant",
|
||||
content=[],
|
||||
status="in_progress",
|
||||
),
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseContentPartAddedEvent(
|
||||
type="response.content_part.added",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
content_index=current_content_index,
|
||||
part=openai_responses_types.ResponseOutputText(
|
||||
type="output_text",
|
||||
text="",
|
||||
annotations=[],
|
||||
logprobs=[],
|
||||
),
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseTextDeltaEvent(
|
||||
type="response.output_text.delta",
|
||||
sequence_number=-1,
|
||||
content_index=current_content_index,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
delta=ctx.parser.last_content_delta,
|
||||
# TODO, use logprobs from ctx.last_request_output
|
||||
logprobs=[],
|
||||
))
|
||||
elif (ctx.parser.current_channel == "analysis"
|
||||
and ctx.parser.current_recipient is None):
|
||||
if not sent_output_item_added:
|
||||
sent_output_item_added = True
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseOutputItemAddedEvent(
|
||||
type="response.output_item.added",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=openai_responses_types.
|
||||
ResponseReasoningItem(
|
||||
type="reasoning",
|
||||
id=current_item_id,
|
||||
summary=[],
|
||||
status="in_progress",
|
||||
),
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseContentPartAddedEvent(
|
||||
type="response.content_part.added",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
content_index=current_content_index,
|
||||
part=openai_responses_types.ResponseOutputText(
|
||||
type="output_text",
|
||||
text="",
|
||||
annotations=[],
|
||||
logprobs=[],
|
||||
),
|
||||
))
|
||||
yield _send_event(
|
||||
ResponseReasoningTextDeltaEvent(
|
||||
type="response.reasoning_text.delta",
|
||||
item_id=current_item_id,
|
||||
output_index=current_output_index,
|
||||
content_index=current_content_index,
|
||||
delta=ctx.parser.last_content_delta,
|
||||
sequence_number=-1,
|
||||
))
|
||||
|
||||
if ctx.is_assistant_action_turn() and len(ctx.parser.messages) > 0:
|
||||
previous_item = ctx.parser.messages[-1]
|
||||
if (self.tool_server is not None
|
||||
and self.tool_server.has_tool("browser")
|
||||
and previous_item.recipient is not None
|
||||
and previous_item.recipient.startswith("browser.")):
|
||||
function_name = previous_item.recipient[len("browser."):]
|
||||
action = None
|
||||
parsed_args = json.loads(previous_item.content[0].text)
|
||||
if function_name == "search":
|
||||
action = (openai_responses_types.
|
||||
response_function_web_search.ActionSearch(
|
||||
type="search",
|
||||
query=parsed_args["query"],
|
||||
))
|
||||
elif function_name == "open":
|
||||
action = (
|
||||
openai_responses_types.
|
||||
response_function_web_search.ActionOpenPage(
|
||||
type="open_page",
|
||||
# TODO: translate to url
|
||||
url=f"cursor:{parsed_args.get('cursor', '')}",
|
||||
))
|
||||
elif function_name == "find":
|
||||
action = (
|
||||
openai_responses_types.
|
||||
response_function_web_search.ActionFind(
|
||||
type="find",
|
||||
pattern=parsed_args["pattern"],
|
||||
# TODO: translate to url
|
||||
url=f"cursor:{parsed_args.get('cursor', '')}",
|
||||
))
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unknown function name: {function_name}")
|
||||
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseOutputItemAddedEvent(
|
||||
type="response.output_item.added",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=openai_responses_types.
|
||||
response_function_web_search.
|
||||
ResponseFunctionWebSearch(
|
||||
# TODO: generate a unique id for web search call
|
||||
type="web_search_call",
|
||||
id=current_item_id,
|
||||
action=action,
|
||||
status="in_progress",
|
||||
),
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseWebSearchCallInProgressEvent(
|
||||
type="response.web_search_call.in_progress",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseWebSearchCallSearchingEvent(
|
||||
type="response.web_search_call.searching",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
))
|
||||
|
||||
# enqueue
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseWebSearchCallCompletedEvent(
|
||||
type="response.web_search_call.completed",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseOutputItemDoneEvent(
|
||||
type="response.output_item.done",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=openai_responses_types.
|
||||
ResponseFunctionWebSearch(
|
||||
type="web_search_call",
|
||||
id=current_item_id,
|
||||
action=action,
|
||||
status="completed",
|
||||
),
|
||||
))
|
||||
|
||||
if (self.tool_server is not None
|
||||
and self.tool_server.has_tool("python")
|
||||
and previous_item.recipient is not None
|
||||
and previous_item.recipient.startswith("python")):
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseOutputItemAddedEvent(
|
||||
type="response.output_item.added",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=openai_responses_types.
|
||||
ResponseCodeInterpreterToolCallParam(
|
||||
type="code_interpreter_call",
|
||||
id=current_item_id,
|
||||
code="",
|
||||
container_id="auto",
|
||||
outputs=[],
|
||||
status="in_progress",
|
||||
),
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseCodeInterpreterCallInProgressEvent(
|
||||
type="response.code_interpreter_call.in_progress",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
))
|
||||
# TODO: do we need to add delta event here?
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseCodeInterpreterCallCodeDoneEvent(
|
||||
type="response.code_interpreter_call_code.done",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
code=previous_item.content[0].text))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseCodeInterpreterCallInterpretingEvent(
|
||||
type="response.code_interpreter_call.interpreting",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.
|
||||
ResponseCodeInterpreterCallCompletedEvent(
|
||||
type="response.code_interpreter_call.completed",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item_id=current_item_id,
|
||||
))
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseOutputItemDoneEvent(
|
||||
type="response.output_item.done",
|
||||
sequence_number=-1,
|
||||
output_index=current_output_index,
|
||||
item=openai_responses_types.
|
||||
ResponseCodeInterpreterToolCallParam(
|
||||
type="code_interpreter_call",
|
||||
id=current_item_id,
|
||||
code=previous_item.content[0].text,
|
||||
container_id="auto",
|
||||
# TODO: add outputs here
|
||||
outputs=[],
|
||||
status="completed",
|
||||
),
|
||||
))
|
||||
|
||||
async def empty_async_generator():
|
||||
# A hack to trick Python to think this is a generator but in fact
|
||||
# it immediately returns.
|
||||
if False:
|
||||
yield
|
||||
|
||||
final_response = await self.responses_full_generator(
|
||||
request,
|
||||
sampling_params,
|
||||
empty_async_generator(),
|
||||
context,
|
||||
model_name,
|
||||
tokenizer,
|
||||
request_metadata,
|
||||
created_time=created_time,
|
||||
)
|
||||
yield _send_event(
|
||||
openai_responses_types.ResponseCompletedEvent(
|
||||
type="response.completed",
|
||||
sequence_number=-1,
|
||||
response=final_response.model_dump(),
|
||||
))
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user