[Quantization] [Eagle] Add complete quantization support to the draft model in Eagle (#28435)

Signed-off-by: Shreyas Kulkarni <shreyas.gp269@gmail.com>
This commit is contained in:
Shreyas Kulkarni 2025-11-17 18:01:34 -05:00 committed by GitHub
parent 7765e5ba75
commit 95ae50b7d1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 282 additions and 29 deletions

View File

@ -0,0 +1,169 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from unittest.mock import Mock, patch
import pytest
import torch
from vllm.config import LoadConfig, ModelConfig, SpeculativeConfig, VllmConfig
from vllm.model_executor.models.utils import get_draft_quant_config
from vllm.platforms import current_platform
DEVICES = (
[f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
if current_platform.is_cuda_alike()
else ["cpu"]
)
def test_get_draft_quant_config_with_draft_model():
mock_draft_model_config = Mock(spec=ModelConfig)
mock_load_config = Mock(spec=LoadConfig)
mock_speculative_config = Mock(spec=SpeculativeConfig)
mock_speculative_config.draft_model_config = mock_draft_model_config
mock_vllm_config = Mock(spec=VllmConfig)
mock_vllm_config.speculative_config = mock_speculative_config
mock_vllm_config.load_config = mock_load_config
mock_quant_config = Mock()
with patch.object(
VllmConfig, "get_quantization_config", return_value=mock_quant_config
):
result = get_draft_quant_config(mock_vllm_config)
# Verify the function calls get_quantization_config with draft model config
VllmConfig.get_quantization_config.assert_called_once_with(
mock_draft_model_config, mock_load_config
)
assert result == mock_quant_config
def test_get_draft_quant_config_without_draft_model():
mock_speculative_config = Mock(spec=SpeculativeConfig)
mock_speculative_config.draft_model_config = None
mock_vllm_config = Mock(spec=VllmConfig)
mock_vllm_config.speculative_config = mock_speculative_config
mock_vllm_config.load_config = Mock(spec=LoadConfig)
result = get_draft_quant_config(mock_vllm_config)
assert result is None
@torch.inference_mode()
@pytest.mark.parametrize("device", DEVICES)
def test_fc_layer_quant_config_usage(dist_init, device) -> None:
import torch
from vllm.model_executor.layers.linear import ReplicatedLinear
if current_platform.is_cuda_alike():
torch.cuda.set_device(device)
torch.set_default_device(device)
input_size = 256
output_size = 128
fc_no_quant = ReplicatedLinear(
input_size=input_size,
output_size=output_size,
bias=False,
params_dtype=torch.float16,
quant_config=None,
prefix="fc",
)
assert fc_no_quant.quant_config is None
assert fc_no_quant.input_size == input_size
assert fc_no_quant.output_size == output_size
mock_quant_config = Mock()
fc_with_quant = ReplicatedLinear(
input_size=input_size,
output_size=output_size,
bias=False,
params_dtype=torch.float16,
quant_config=mock_quant_config,
prefix="fc",
)
assert fc_with_quant.quant_config == mock_quant_config
# Check forward pass
x = torch.randn(2, input_size, dtype=torch.float16)
output, _ = fc_no_quant(x)
assert output.shape == (2, output_size)
def test_kv_cache_scale_name_handling():
# Mock a quant config that supports cache scales
mock_quant_config = Mock()
mock_quant_config.get_cache_scale = Mock(return_value="layers.0.self_attn.kv_scale")
# Condition check in load_weights
name = "layers.0.self_attn.k_proj.weight"
scale_name = mock_quant_config.get_cache_scale(name)
# Check if get_cache_scale is called and returns expected value
mock_quant_config.get_cache_scale.assert_called_once_with(name)
assert scale_name == "layers.0.self_attn.kv_scale"
def test_kv_cache_scale_name_no_scale():
# Mock a quant config that returns None for get_cache_scale
mock_quant_config = Mock()
mock_quant_config.get_cache_scale = Mock(return_value=None)
name = "layers.0.mlp.gate_proj.weight"
scale_name = mock_quant_config.get_cache_scale(name)
# Should return None for weights that don't have cache scales
assert scale_name is None
def test_maybe_remap_kv_scale_name():
from vllm.model_executor.model_loader.weight_utils import maybe_remap_kv_scale_name
params_dict = {
"layers.0.self_attn.kv_scale": Mock(),
"layers.1.self_attn.kv_scale": Mock(),
}
name = "layers.0.self_attn.some_scale"
remapped = maybe_remap_kv_scale_name(name, params_dict)
assert remapped in params_dict or remapped == name or remapped is None
def test_load_weights_kv_scale_handling():
kv_scale_param = Mock()
kv_scale_param.weight_loader = Mock()
params_dict = {
"layers.0.self_attn.kv_scale": kv_scale_param,
}
mock_quant_config = Mock()
mock_quant_config.get_cache_scale = Mock(return_value="layers.0.self_attn.kv_scale")
# Load_weights logic for KV cache scales
name = "layers.0.self_attn.k_proj.weight"
loaded_weight_tensor = torch.tensor([1.0, 2.0])
if mock_quant_config is not None:
scale_name = mock_quant_config.get_cache_scale(name)
if scale_name:
param = params_dict[scale_name]
assert param is kv_scale_param
weight_to_load = (
loaded_weight_tensor
if loaded_weight_tensor.dim() == 0
else loaded_weight_tensor[0]
)
assert scale_name == "layers.0.self_attn.kv_scale"
assert weight_to_load == loaded_weight_tensor[0]

View File

@ -11,13 +11,22 @@ from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.llama import LlamaDecoderLayer, LlamaForCausalLM
from .utils import AutoWeightsLoader, maybe_prefix, process_eagle_weight
from .utils import (
AutoWeightsLoader,
get_draft_quant_config,
maybe_prefix,
process_eagle_weight,
)
logger = init_logger(__name__)
@ -40,14 +49,7 @@ class LlamaDecoderLayer(LlamaDecoderLayer):
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
"""Use drafter's quantization config instead of verifier's."""
draft_model_config = vllm_config.speculative_config.draft_model_config
draft_load_config = vllm_config.load_config
return (
VllmConfig.get_quantization_config(draft_model_config, draft_load_config)
if draft_model_config
else None
)
return get_draft_quant_config(vllm_config)
@support_torch_compile
@ -63,6 +65,9 @@ class LlamaModel(nn.Module):
self.config = vllm_config.speculative_config.draft_model_config.hf_config
self.vocab_size = self.config.vocab_size
# Get drafter's quantization config
self.quant_config = get_draft_quant_config(vllm_config)
self.embed_tokens = VocabParallelEmbedding(
self.config.vocab_size,
self.config.hidden_size,
@ -80,8 +85,14 @@ class LlamaModel(nn.Module):
for i in range(self.config.num_hidden_layers)
]
)
self.fc = torch.nn.Linear(
self.config.hidden_size * 2, self.config.hidden_size, bias=False
self.fc = ReplicatedLinear(
input_size=self.config.hidden_size * 2,
output_size=self.config.hidden_size,
bias=False,
params_dtype=vllm_config.model_config.dtype,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "fc"),
return_bias=False,
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
@ -117,6 +128,24 @@ class LlamaModel(nn.Module):
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
# Handle kv cache quantization scales
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(name)
):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
# Remapping the name FP8 kv-scale
if "scale" in name:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue

View File

@ -11,19 +11,27 @@ from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig, get_current_vllm_config
from vllm.logger import init_logger
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import QKVParallelLinear
from vllm.model_executor.layers.linear import QKVParallelLinear, ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.llama import LlamaDecoderLayer, LlamaForCausalLM
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import NestedTensors
from .utils import AutoWeightsLoader, maybe_prefix, process_eagle_weight
from .utils import (
AutoWeightsLoader,
get_draft_quant_config,
maybe_prefix,
process_eagle_weight,
)
logger = init_logger(__name__)
@ -66,14 +74,7 @@ class LlamaDecoderLayer(LlamaDecoderLayer):
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
"""Use drafter's quantization config instead of verifier's."""
draft_model_config = vllm_config.speculative_config.draft_model_config
draft_load_config = vllm_config.load_config
return (
VllmConfig.get_quantization_config(draft_model_config, draft_load_config)
if draft_model_config
else None
)
return get_draft_quant_config(vllm_config)
def _norm_before_residual(
self, hidden_states: torch.Tensor
@ -140,6 +141,9 @@ class LlamaModel(nn.Module):
self.config = vllm_config.speculative_config.draft_model_config.hf_config
self.vocab_size = self.config.vocab_size
# Get drafter's quantization config
self.quant_config = get_draft_quant_config(vllm_config)
current_vllm_config = get_current_vllm_config()
self.embed_tokens = VocabParallelEmbedding(
@ -160,13 +164,19 @@ class LlamaModel(nn.Module):
]
)
if hasattr(self.config, "target_hidden_size"):
self.fc = torch.nn.Linear(
self.config.target_hidden_size * 3, self.config.hidden_size, bias=False
)
fc_input_size = self.config.target_hidden_size * 3
else:
self.fc = torch.nn.Linear(
self.config.hidden_size * 3, self.config.hidden_size, bias=False
)
fc_input_size = self.config.hidden_size * 3
self.fc = ReplicatedLinear(
input_size=fc_input_size,
output_size=self.config.hidden_size,
bias=False,
params_dtype=vllm_config.model_config.dtype,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "fc"),
return_bias=False,
)
self.norm = RMSNorm(
self.config.hidden_size,
eps=self.config.rms_norm_eps,
@ -211,6 +221,24 @@ class LlamaModel(nn.Module):
for name, loaded_weight in weights:
if "midlayer." in name:
name = name.replace("midlayer.", "layers.0.")
# Handle kv cache quantization scales
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(name)
):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
# Remapping the name FP8 kv-scale
if "scale" in name:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue

View File

@ -18,6 +18,9 @@ from vllm.distributed import (
get_tensor_model_parallel_world_size,
)
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import supports_any_eagle
from vllm.multimodal import NestedTensors
@ -715,6 +718,30 @@ def maybe_prefix(prefix: str, name: str) -> str:
return name if not prefix else f"{prefix}.{name}"
def get_draft_quant_config(
vllm_config: VllmConfig,
) -> QuantizationConfig | None:
"""Get quantization config for Draft models.
Draft models should use their own quantization config instead of the verifier/target
model's config. This helper retrieves the draft model's quantization config.
Args:
vllm_config: The vLLM configuration object.
Returns:
The draft model's config if available, None otherwise.
"""
draft_model_config = vllm_config.speculative_config.draft_model_config
draft_load_config = vllm_config.load_config
return (
VllmConfig.get_quantization_config(draft_model_config, draft_load_config)
if draft_model_config
else None
)
def extract_layer_index(layer_name: str, num_attn_module: int = 1) -> int:
"""
Extract the layer index from the module name.