Delete HF version of Phi 4 MM (#30049)

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
This commit is contained in:
Harry Mellor 2025-12-04 13:44:50 +00:00 committed by GitHub
parent 74c4d80c6c
commit 9998ea5b57
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 1 additions and 1756 deletions

View File

@ -711,7 +711,6 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `PaliGemmaForConditionalGeneration` | PaliGemma, PaliGemma 2 | T + I<sup>E</sup> | `google/paligemma-3b-pt-224`, `google/paligemma-3b-mix-224`, `google/paligemma2-3b-ft-docci-448`, etc. | | ✅︎ |
| `Phi3VForCausalLM` | Phi-3-Vision, Phi-3.5-Vision | T + I<sup>E+</sup> | `microsoft/Phi-3-vision-128k-instruct`, `microsoft/Phi-3.5-vision-instruct`, etc. | | ✅︎ |
| `Phi4MMForCausalLM` | Phi-4-multimodal | T + I<sup>+</sup> / T + A<sup>+</sup> / I<sup>+</sup> + A<sup>+</sup> | `microsoft/Phi-4-multimodal-instruct`, etc. | ✅︎ | ✅︎ |
| `Phi4MultimodalForCausalLM` | Phi-4-multimodal (HF Transformers) | T + I<sup>+</sup> / T + A<sup>+</sup> / I<sup>+</sup> + A<sup>+</sup> | `microsoft/Phi-4-multimodal-instruct` (with revision `refs/pr/70`), etc. | ✅︎ | ✅︎ |
| `PixtralForConditionalGeneration` | Ministral 3 (Mistral format), Mistral 3 (Mistral format), Mistral Large 3 (Mistral format), Pixtral (Mistral format) | T + I<sup>+</sup> | `mistralai/Ministral-3-3B-Instruct-2512`, `mistralai/Mistral-Small-3.1-24B-Instruct-2503`, `mistralai/Mistral-Large-3-675B-Instruct-2512` `mistralai/Pixtral-12B-2409` etc. | | ✅︎ |
| `QwenVLForConditionalGeneration`<sup>^</sup> | Qwen-VL | T + I<sup>E+</sup> | `Qwen/Qwen-VL`, `Qwen/Qwen-VL-Chat`, etc. | ✅︎ | ✅︎ |
| `Qwen2AudioForConditionalGeneration` | Qwen2-Audio | T + A<sup>+</sup> | `Qwen/Qwen2-Audio-7B-Instruct` | | ✅︎ |

View File

@ -1,281 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from collections.abc import Sequence
import librosa
import pytest
from huggingface_hub import snapshot_download
from vllm.assets.image import ImageAsset
from vllm.lora.request import LoRARequest
from vllm.multimodal.image import rescale_image_size
from ....conftest import (
IMAGE_ASSETS,
HfRunner,
PromptAudioInput,
PromptImageInput,
VllmRunner,
)
from ....utils import large_gpu_test
from ...utils import check_logprobs_close
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts(
{
"stop_sign": "<|user|>\n<|image|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501
"cherry_blossom": "<|user|>\n<|image|>\nPlease infer the season with reason in details.<|end|>\n<|assistant|>\n", # noqa: E501
}
)
HF_MULTIIMAGE_IMAGE_PROMPT = (
"<|user|>\n<|image|>\n<|image|>\nDescribe these images.<|end|>\n<|assistant|>\n" # noqa: E501
)
model_path = snapshot_download(
"microsoft/Phi-4-multimodal-instruct", revision="refs/pr/70"
)
# Since the vision-lora and speech-lora co-exist with the base model,
# we have to manually specify the path of the lora weights.
vision_lora_path = os.path.join(model_path, "vision-lora")
speech_question = os.path.join(
model_path, "examples", "what_is_shown_in_this_image.wav"
)
models = [model_path]
target_dtype = "half"
def run_test(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
inputs: Sequence[tuple[list[str], PromptImageInput, PromptAudioInput | None]],
model: str,
*,
max_model_len: int,
dtype: str,
max_tokens: int,
num_logprobs: int,
mm_limit: int,
tensor_parallel_size: int,
distributed_executor_backend: str | None = None,
):
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test are from IMAGE_ASSETS.
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalDataDict objects
and corresponding MultiModalConfig as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
# max_model_len should be greater than image_feature_size
with vllm_runner(
model,
task="generate",
max_model_len=max_model_len,
max_num_seqs=2,
dtype=dtype,
limit_mm_per_prompt={"image": mm_limit},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enable_lora=True,
max_lora_rank=320,
gpu_memory_utilization=0.8, # set to 0.8 to avoid OOM in CI
enforce_eager=True,
trust_remote_code=False,
) as vllm_model:
lora_request = LoRARequest("vision", 1, vision_lora_path)
vllm_outputs_per_case = [
vllm_model.generate_greedy_logprobs(
prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images,
audios=audios,
lora_request=lora_request,
)
for prompts, images, audios in inputs
]
with hf_runner(model, dtype=dtype) as hf_model:
hf_model.model.load_adapter(
vision_lora_path,
adapter_name="vision",
)
hf_processor = hf_model.processor
eos_token_id = hf_processor.tokenizer.eos_token_id
hf_outputs_per_case = [
hf_model.generate_greedy_logprobs_limit(
prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images,
audios=audios,
eos_token_id=eos_token_id,
)
for prompts, images, audios in inputs
]
for hf_outputs, vllm_outputs in zip(hf_outputs_per_case, vllm_outputs_per_case):
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_model_len", [12800])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_models(
hf_runner,
vllm_runner,
image_assets,
model,
size_factors,
dtype: str,
max_model_len: int,
max_tokens: int,
num_logprobs: int,
) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_image = [
(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
None,
)
for image, prompt in zip(images, HF_IMAGE_PROMPTS)
]
run_test(
hf_runner,
vllm_runner,
inputs_per_image,
model,
dtype=dtype,
max_model_len=max_model_len,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)
@large_gpu_test(min_gb=48)
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
# [],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_model_len", [25600])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_multi_images_models(
hf_runner,
vllm_runner,
image_assets,
model,
size_factors,
dtype: str,
max_model_len: int,
max_tokens: int,
num_logprobs: int,
) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case = [
(
[HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors],
[
[rescale_image_size(image, factor) for image in images]
for factor in size_factors
],
None,
),
]
run_test(
hf_runner,
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_model_len=max_model_len,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=2,
tensor_parallel_size=1,
)
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_model_len", [12800])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_vision_speech_models(
hf_runner,
vllm_runner,
model,
dtype: str,
max_model_len: int,
max_tokens: int,
num_logprobs: int,
) -> None:
# use the example speech question so that the model outputs are reasonable
audio = librosa.load(speech_question, sr=16000)
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
inputs_vision_speech = [
(
["<|user|><|image|><|audio|><|end|><|assistant|>"],
[image],
[audio],
),
]
run_test(
hf_runner,
vllm_runner,
inputs_vision_speech,
model,
dtype=dtype,
max_model_len=max_model_len,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)

View File

@ -396,28 +396,6 @@ def test_processing_correctness(
)
# Phi4MultimodalForCausalLM share same model repo with original format
# Phi4MMForCausalLM, so we add it as a separate test case
# Remove this test after conversion PR merged:
# https://huggingface.co/microsoft/Phi-4-multimodal-instruct/discussions/70
@pytest.mark.parametrize("model_arch", ["Phi4MultimodalForCausalLM"])
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
@pytest.mark.parametrize("num_batches", [32])
@pytest.mark.parametrize("simplify_rate", [1.0])
def test_processing_correctness_phi4_multimodal(
model_arch: str,
hit_rate: float,
num_batches: int,
simplify_rate: float,
):
_test_processing_correctness(
model_arch,
hit_rate=hit_rate,
num_batches=num_batches,
simplify_rate=simplify_rate,
)
def _assert_inputs_equal(
a: MultiModalInputs,
b: MultiModalInputs,

View File

@ -771,10 +771,6 @@ _MULTIMODAL_EXAMPLE_MODELS = {
"Phi4MMForCausalLM": _HfExamplesInfo(
"microsoft/Phi-4-multimodal-instruct", trust_remote_code=True
),
"Phi4MultimodalForCausalLM": _HfExamplesInfo(
"microsoft/Phi-4-multimodal-instruct",
revision="refs/pr/70",
),
"PixtralForConditionalGeneration": _HfExamplesInfo(
"mistralai/Pixtral-12B-2409",
extras={

File diff suppressed because it is too large Load Diff

View File

@ -374,7 +374,6 @@ _MULTIMODAL_MODELS = {
),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"Phi4MMForCausalLM": ("phi4mm", "Phi4MMForCausalLM"),
"Phi4MultimodalForCausalLM": ("phi4_multimodal", "Phi4MultimodalForCausalLM"), # noqa: E501
"PixtralForConditionalGeneration": ("pixtral", "PixtralForConditionalGeneration"), # noqa: E501
"QwenVLForConditionalGeneration": ("qwen_vl", "QwenVLForConditionalGeneration"), # noqa: E501
"Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501
@ -507,6 +506,7 @@ _PREVIOUSLY_SUPPORTED_MODELS = {
"MotifForCausalLM": "0.10.2",
"Phi3SmallForCausalLM": "0.9.2",
"Phi4FlashForCausalLM": "0.10.2",
"Phi4MultimodalForCausalLM": "0.12.0",
# encoder-decoder models except whisper
# have been removed for V0 deprecation.
"BartModel": "0.10.2",