mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-23 12:44:27 +08:00
Update some more deprecated type hinting (#17998)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
This commit is contained in:
parent
acee8f48aa
commit
9d7ea9dbbf
@ -79,7 +79,9 @@ exclude = [
|
||||
"vllm/engine/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/executor/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/lora/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/model_executor/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/model_executor/layers/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/model_executor/model_loader/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/model_executor/models/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/platforms/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/plugins/**/*.py" = ["UP006", "UP035"]
|
||||
"vllm/profiler/**/*.py" = ["UP006", "UP035"]
|
||||
|
||||
@ -1,7 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from typing import Dict, Type
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from vllm.config import get_current_vllm_config
|
||||
@ -138,7 +136,7 @@ class CustomOp(nn.Module):
|
||||
# Examples:
|
||||
# - MyOp.enabled()
|
||||
# - op_registry["my_op"].enabled()
|
||||
op_registry: Dict[str, Type['CustomOp']] = {}
|
||||
op_registry: dict[str, type['CustomOp']] = {}
|
||||
|
||||
# Decorator to register custom ops.
|
||||
@classmethod
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import os
|
||||
from typing import Any, List
|
||||
from typing import Any
|
||||
|
||||
import llguidance
|
||||
import llguidance.hf
|
||||
@ -62,7 +62,7 @@ class GuidanceLogitsProcessor:
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
input_ids: List[int],
|
||||
input_ids: list[int],
|
||||
scores: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
# we initialize the guidance model here
|
||||
|
||||
@ -1,16 +1,16 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, TypedDict, Union
|
||||
from typing import Optional, TypedDict, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
# These classes are deprecated, see SamplingParams
|
||||
class LLMGuidedOptions(TypedDict, total=False):
|
||||
guided_json: Union[Dict, BaseModel, str]
|
||||
guided_json: Union[dict, BaseModel, str]
|
||||
guided_regex: str
|
||||
guided_choice: List[str]
|
||||
guided_choice: list[str]
|
||||
guided_grammar: str
|
||||
guided_decoding_backend: str
|
||||
guided_whitespace_pattern: str
|
||||
@ -20,9 +20,9 @@ class LLMGuidedOptions(TypedDict, total=False):
|
||||
@dataclass
|
||||
class GuidedDecodingRequest:
|
||||
"""One of the fields will be used to retrieve the logit processor."""
|
||||
guided_json: Optional[Union[Dict, BaseModel, str]] = None
|
||||
guided_json: Optional[Union[dict, BaseModel, str]] = None
|
||||
guided_regex: Optional[str] = None
|
||||
guided_choice: Optional[List[str]] = None
|
||||
guided_choice: Optional[list[str]] = None
|
||||
guided_grammar: Optional[str] = None
|
||||
guided_decoding_backend: Optional[str] = None
|
||||
guided_whitespace_pattern: Optional[str] = None
|
||||
|
||||
@ -6,7 +6,7 @@ import os
|
||||
from enum import Enum
|
||||
from json import dumps as json_dumps
|
||||
from re import escape as regex_escape
|
||||
from typing import Optional, Tuple, Union
|
||||
from typing import Optional, Union
|
||||
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
@ -111,7 +111,7 @@ def get_local_outlines_guided_decoding_logits_processor(
|
||||
|
||||
def _get_guide_and_mode(
|
||||
guided_params: GuidedDecodingParams
|
||||
) -> Union[Tuple[str, GuidedDecodingMode], Tuple[None, None]]:
|
||||
) -> Union[tuple[str, GuidedDecodingMode], tuple[None, None]]:
|
||||
if guided_params.json:
|
||||
if isinstance(guided_params.json, dict):
|
||||
# turn dict into hashable string
|
||||
|
||||
@ -19,7 +19,7 @@ import copy
|
||||
import json
|
||||
from collections import defaultdict
|
||||
from functools import lru_cache
|
||||
from typing import Callable, DefaultDict, Dict, List, Optional, Union
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -53,10 +53,10 @@ class BaseLogitsProcessor:
|
||||
self._guide: Guide = guide
|
||||
self._reasoner: Optional[ReasoningParser] = reasoner
|
||||
# CFGState is used for the FSM state for CFGGuide
|
||||
self._fsm_state: DefaultDict[int, Union[int,
|
||||
self._fsm_state: defaultdict[int, Union[int,
|
||||
CFGState]] = defaultdict(int)
|
||||
|
||||
def __call__(self, input_ids: List[int],
|
||||
def __call__(self, input_ids: list[int],
|
||||
scores: torch.Tensor) -> torch.Tensor:
|
||||
"""Use the FSM to bias the logits before sampling the next token."""
|
||||
|
||||
@ -160,7 +160,7 @@ class RegexLogitsProcessor(BaseLogitsProcessor):
|
||||
|
||||
class JSONLogitsProcessor(RegexLogitsProcessor):
|
||||
|
||||
def __init__(self, schema: Union[str, Dict, BaseModel],
|
||||
def __init__(self, schema: Union[str, dict, BaseModel],
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
whitespace_pattern: Union[str, None],
|
||||
reasoner: Optional[ReasoningParser]):
|
||||
@ -181,7 +181,7 @@ class JSONLogitsProcessor(RegexLogitsProcessor):
|
||||
"""
|
||||
if isinstance(schema, type(BaseModel)):
|
||||
schema_str = json.dumps(schema.model_json_schema())
|
||||
elif isinstance(schema, Dict):
|
||||
elif isinstance(schema, dict):
|
||||
schema_str = json.dumps(schema)
|
||||
elif isinstance(schema, str):
|
||||
schema_str = schema
|
||||
@ -252,11 +252,11 @@ def _adapt_tokenizer(tokenizer: PreTrainedTokenizerBase):
|
||||
return string
|
||||
|
||||
def change_decoder(
|
||||
decoder: Callable[[List[int]],
|
||||
str]) -> Callable[[List[int]], List[str]]:
|
||||
decoder: Callable[[list[int]],
|
||||
str]) -> Callable[[list[int]], list[str]]:
|
||||
"""Sync vLLM's decoder with the outlines by returning list."""
|
||||
|
||||
def new_decoder(inp_tokens: List[int]) -> List[str]:
|
||||
def new_decoder(inp_tokens: list[int]) -> list[str]:
|
||||
if (isinstance(inp_tokens, list) and len(inp_tokens) == 1
|
||||
and isinstance(inp_tokens[0], list)):
|
||||
inp_tokens = inp_tokens[0]
|
||||
|
||||
@ -6,7 +6,7 @@ from __future__ import annotations
|
||||
import json
|
||||
import re
|
||||
from dataclasses import dataclass, field
|
||||
from typing import TYPE_CHECKING, Any, List
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
import torch
|
||||
|
||||
@ -273,7 +273,7 @@ class GrammarConfig:
|
||||
return re.sub(r'(["\\])', r'\\\1', s)
|
||||
|
||||
@staticmethod
|
||||
def choice_as_grammar(choice: List[str] | None) -> str:
|
||||
def choice_as_grammar(choice: list[str] | None) -> str:
|
||||
if choice is None:
|
||||
raise ValueError("Choice is not set")
|
||||
escaped_choices = (GrammarConfig.escape_ebnf_string(c) for c in choice)
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Tuple
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
@ -23,9 +23,9 @@ class PoolingMetadata:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
seq_groups: List[Tuple[List[int], PoolingParams]],
|
||||
seq_data: Dict[int, Any], # Specific data related to sequences
|
||||
prompt_lens: List[int],
|
||||
seq_groups: list[tuple[list[int], PoolingParams]],
|
||||
seq_data: dict[int, Any], # Specific data related to sequences
|
||||
prompt_lens: list[int],
|
||||
) -> None:
|
||||
self.seq_groups = seq_groups
|
||||
self.seq_data = seq_data
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
from array import array
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
@ -25,10 +25,10 @@ class SequenceGroupToSample:
|
||||
# |-- query_len ---|
|
||||
|
||||
# Sequence ids for the sequence group in a previous step.
|
||||
seq_ids: List[int]
|
||||
seq_ids: list[int]
|
||||
sampling_params: SamplingParams
|
||||
# seq_id -> sequence data.
|
||||
seq_data: Dict[int, SequenceData]
|
||||
seq_data: dict[int, SequenceData]
|
||||
# The length of the sequence (all tokens seen in the past + new token to
|
||||
# compute attention) of the sequence group. None if it is in a decode
|
||||
# stage.
|
||||
@ -44,9 +44,9 @@ class SequenceGroupToSample:
|
||||
is_prompt: bool
|
||||
# Query token indices from logits. to compute prompt logprob. Empty if
|
||||
# prompt logprob is not required.
|
||||
prompt_logprob_indices: List[int]
|
||||
prompt_logprob_indices: list[int]
|
||||
# Sample token indices from logits. Empty if sampling is not required.
|
||||
sample_indices: List[int]
|
||||
sample_indices: list[int]
|
||||
|
||||
@property
|
||||
def do_sample(self):
|
||||
@ -78,7 +78,7 @@ class SamplingMetadataCache:
|
||||
"""Used to cache SamplingMetadata objects between scheduler iterations"""
|
||||
|
||||
def __init__(self):
|
||||
self._seq_group_to_sample_cache: Dict[int, PyObjectCache] = {}
|
||||
self._seq_group_to_sample_cache: dict[int, PyObjectCache] = {}
|
||||
|
||||
def get_cached_seq_group_to_sample(self, num_seqs):
|
||||
if num_seqs not in self._seq_group_to_sample_cache:
|
||||
@ -130,9 +130,9 @@ class SamplingMetadata:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
seq_groups: List[SequenceGroupToSample],
|
||||
seq_groups: list[SequenceGroupToSample],
|
||||
selected_token_indices: torch.Tensor,
|
||||
categorized_sample_indices: Dict[SamplingType, torch.Tensor],
|
||||
categorized_sample_indices: dict[SamplingType, torch.Tensor],
|
||||
num_prompts: int,
|
||||
skip_sampler_cpu_output: bool = False,
|
||||
reuse_sampling_tensors: bool = False,
|
||||
@ -146,12 +146,12 @@ class SamplingMetadata:
|
||||
|
||||
@staticmethod
|
||||
def prepare(
|
||||
seq_group_metadata_list: List[SequenceGroupMetadata],
|
||||
seq_lens: List[int],
|
||||
query_lens: List[int],
|
||||
seq_group_metadata_list: list[SequenceGroupMetadata],
|
||||
seq_lens: list[int],
|
||||
query_lens: list[int],
|
||||
device: str,
|
||||
pin_memory: bool,
|
||||
generators: Optional[Dict[str, torch.Generator]] = None,
|
||||
generators: Optional[dict[str, torch.Generator]] = None,
|
||||
cache: Optional[SamplingMetadataCache] = None,
|
||||
) -> "SamplingMetadata":
|
||||
(
|
||||
@ -195,16 +195,16 @@ class SamplingMetadata:
|
||||
|
||||
|
||||
def _prepare_seq_groups(
|
||||
seq_group_metadata_list: List[SequenceGroupMetadata],
|
||||
seq_lens: List[int],
|
||||
query_lens: List[int],
|
||||
seq_group_metadata_list: list[SequenceGroupMetadata],
|
||||
seq_lens: list[int],
|
||||
query_lens: list[int],
|
||||
device: str,
|
||||
generators: Optional[Dict[str, torch.Generator]] = None,
|
||||
generators: Optional[dict[str, torch.Generator]] = None,
|
||||
cache: Optional[SamplingMetadataCache] = None,
|
||||
) -> Tuple[
|
||||
List[SequenceGroupToSample],
|
||||
List[int],
|
||||
Dict[SamplingType, List[int]],
|
||||
) -> tuple[
|
||||
list[SequenceGroupToSample],
|
||||
list[int],
|
||||
dict[SamplingType, list[int]],
|
||||
int,
|
||||
]:
|
||||
"""Prepare sequence groups and indices for sampling.
|
||||
@ -227,17 +227,17 @@ def _prepare_seq_groups(
|
||||
num_prompts: Total number of prompts from `seq_group_metadata_list`.
|
||||
"""
|
||||
# Batched sequence groups for the current model forward stsep.
|
||||
seq_groups: List[SequenceGroupToSample] = []
|
||||
seq_groups: list[SequenceGroupToSample] = []
|
||||
# A list of token indices to sample/compute logprob. It is used to
|
||||
# prune the outcome logits from the model for the performance.
|
||||
selected_token_indices: List[int] = []
|
||||
selected_token_indices: list[int] = []
|
||||
# Used for selected_token_indices.
|
||||
model_output_idx = 0
|
||||
|
||||
# Sampling type -> (
|
||||
# indices to sample/prompt logprob within pruned output logits,
|
||||
# indices to sample within pruned logits)
|
||||
categorized_sample_indices: Dict[SamplingType, List[int]] = {
|
||||
categorized_sample_indices: dict[SamplingType, list[int]] = {
|
||||
t: []
|
||||
for t in SamplingType
|
||||
}
|
||||
@ -265,9 +265,9 @@ def _prepare_seq_groups(
|
||||
# If the current seq group is in decode stage, it is None.
|
||||
seq_len: Optional[int] = None
|
||||
query_len: Optional[int] = None
|
||||
prompt_logprob_indices: List[int] = (sample_obj.prompt_logprob_indices
|
||||
prompt_logprob_indices: list[int] = (sample_obj.prompt_logprob_indices
|
||||
if cache is not None else [])
|
||||
sample_indices: List[int] = (sample_obj.sample_indices
|
||||
sample_indices: list[int] = (sample_obj.sample_indices
|
||||
if cache is not None else [])
|
||||
do_sample = seq_group_metadata.do_sample
|
||||
|
||||
@ -389,16 +389,16 @@ class SamplingTensors:
|
||||
vocab_size: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
) -> Tuple["SamplingTensors", bool, bool, bool]:
|
||||
prompt_tokens: List[array] = []
|
||||
output_tokens: List[array] = []
|
||||
top_ks: List[int] = []
|
||||
temperatures: List[float] = []
|
||||
top_ps: List[float] = []
|
||||
min_ps: List[float] = []
|
||||
presence_penalties: List[float] = []
|
||||
frequency_penalties: List[float] = []
|
||||
repetition_penalties: List[float] = []
|
||||
) -> tuple["SamplingTensors", bool, bool, bool]:
|
||||
prompt_tokens: list[array] = []
|
||||
output_tokens: list[array] = []
|
||||
top_ks: list[int] = []
|
||||
temperatures: list[float] = []
|
||||
top_ps: list[float] = []
|
||||
min_ps: list[float] = []
|
||||
presence_penalties: list[float] = []
|
||||
frequency_penalties: list[float] = []
|
||||
repetition_penalties: list[float] = []
|
||||
do_penalties = False
|
||||
do_top_p_top_k = False
|
||||
do_min_p = False
|
||||
@ -496,15 +496,15 @@ class SamplingTensors:
|
||||
@classmethod
|
||||
def from_lists(
|
||||
cls,
|
||||
temperatures: List[float],
|
||||
top_ps: List[float],
|
||||
top_ks: List[int],
|
||||
min_ps: List[float],
|
||||
presence_penalties: List[float],
|
||||
frequency_penalties: List[float],
|
||||
repetition_penalties: List[float],
|
||||
prompt_tokens: List[array],
|
||||
output_tokens: List[array],
|
||||
temperatures: list[float],
|
||||
top_ps: list[float],
|
||||
top_ks: list[int],
|
||||
min_ps: list[float],
|
||||
presence_penalties: list[float],
|
||||
frequency_penalties: list[float],
|
||||
repetition_penalties: list[float],
|
||||
prompt_tokens: list[array],
|
||||
output_tokens: list[array],
|
||||
vocab_size: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Utils for model executor."""
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
|
||||
@ -12,7 +12,7 @@ def set_random_seed(seed: int) -> None:
|
||||
|
||||
def set_weight_attrs(
|
||||
weight: torch.Tensor,
|
||||
weight_attrs: Optional[Dict[str, Any]],
|
||||
weight_attrs: Optional[dict[str, Any]],
|
||||
):
|
||||
"""Set attributes on a weight tensor.
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user