[Model] Add OLMo November 2024 model (#10503)

This commit is contained in:
Shane A 2024-11-25 14:26:40 -08:00 committed by GitHub
parent 1b583cfefa
commit 9db713a1dc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 611 additions and 2 deletions

View File

@ -234,6 +234,11 @@ Text Generation
- :code:`allenai/OLMo-1B-hf`, :code:`allenai/OLMo-7B-hf`, etc.
-
- ✅︎
* - :code:`OLMo2ForCausalLM`
- OLMo2
- :code:`allenai/OLMo2-7B-1124`, etc.
-
- ✅︎
* - :code:`OLMoEForCausalLM`
- OLMoE
- :code:`allenai/OLMoE-1B-7B-0924`, :code:`allenai/OLMoE-1B-7B-0924-Instruct`, etc.

View File

@ -167,6 +167,7 @@ TEXT_GENERATION_MODELS = {
"mosaicml/mpt-7b": PPTestSettings.fast(),
"nvidia/Minitron-8B-Base": PPTestSettings.fast(),
"allenai/OLMo-1B-hf": PPTestSettings.fast(),
"shanearora/OLMo-7B-1124-hf": PPTestSettings.fast(),
"allenai/OLMoE-1B-7B-0924-Instruct": PPTestSettings.fast(),
"facebook/opt-iml-max-1.3b": PPTestSettings.fast(),
"OrionStarAI/Orion-14B-Chat": PPTestSettings.fast(trust_remote_code=True),

View File

@ -93,6 +93,7 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
"MPTForCausalLM": _HfExamplesInfo("mosaicml/mpt-7b"),
"NemotronForCausalLM": _HfExamplesInfo("nvidia/Minitron-8B-Base"),
"OlmoForCausalLM": _HfExamplesInfo("allenai/OLMo-1B-hf"),
"Olmo2ForCausalLM": _HfExamplesInfo("shanearora/OLMo-7B-1124-hf"),
"OlmoeForCausalLM": _HfExamplesInfo("allenai/OLMoE-1B-7B-0924-Instruct"),
"OPTForCausalLM": _HfExamplesInfo("facebook/opt-iml-max-1.3b"),
"OrionForCausalLM": _HfExamplesInfo("OrionStarAI/Orion-14B-Chat",

View File

@ -0,0 +1,432 @@
# Adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/olmo2/modeling_olmo2.py
# Copyright 2024 The vLLM team.
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only OLMo2 model compatible with HuggingFace weights."""
from functools import partial
from typing import Iterable, List, Optional, Tuple, Union
import torch
from torch import nn
from vllm.attention import Attention, AttentionMetadata
from vllm.config import VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.distributed.communication_op import tensor_model_parallel_all_gather
from vllm.distributed.parallel_state import get_tensor_model_parallel_rank
from vllm.distributed.utils import split_tensor_along_last_dim
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import SupportsPP
from vllm.model_executor.models.utils import (
is_pp_missing_parameter, make_empty_intermediate_tensors_factory,
make_layers, maybe_prefix)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.olmo2 import Olmo2Config
class Olmo2Attention(nn.Module):
"""
This is the attention block where the output is computed as
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
self.config = vllm_config.model_config.hf_config
assert isinstance(self.config, Olmo2Config)
hidden_size = self.config.hidden_size
self.tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = self.config.num_attention_heads
assert hidden_size % self.total_num_heads == 0
assert self.total_num_heads % self.tp_size == 0
self.num_heads = self.total_num_heads // self.tp_size
self.total_num_kv_heads = (self.config.num_key_value_heads
or self.total_num_heads)
if self.total_num_kv_heads >= self.tp_size:
assert self.total_num_kv_heads % self.tp_size == 0
else:
assert self.tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.max_position_embeddings = self.config.max_position_embeddings
self.rope_theta = self.config.rope_theta
# Attention input projection. Projects x -> (q, k, v)
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=vllm_config.quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.tp_rank = get_tensor_model_parallel_rank()
self.k_norm = RMSNorm(
self.total_num_kv_heads * self.head_dim,
eps=self.config.rms_norm_eps,
)
self.q_norm = RMSNorm(self.config.hidden_size,
eps=self.config.rms_norm_eps)
# Rotary embeddings.
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta, # type: ignore
)
self.scaling = self.head_dim**-0.5
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=vllm_config.cache_config,
quant_config=vllm_config.quant_config,
prefix=prefix,
)
# Attention output projection.
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=vllm_config.quant_config,
prefix=f"{prefix}.o_proj",
)
def _apply_qk_norm(self, q: torch.Tensor,
k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if self.tp_size > 1:
q = tensor_model_parallel_all_gather(q.contiguous())
k = tensor_model_parallel_all_gather(k.contiguous())
q = self.q_norm.forward_native(q)
k = self.k_norm.forward_native(k)
if self.tp_size > 1:
splitter = partial(split_tensor_along_last_dim,
num_partitions=self.tp_size)
q = splitter(q)[self.tp_rank]
k = splitter(k)[self.tp_rank]
return q, k
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
class Olmo2MLP(nn.Module):
"""
This is the MLP block where the output is computed as
``MLP(x)`` in ``LN(MLP(x + LN(Attention(x))))``
(plus another skip connection).
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
assert isinstance(config, Olmo2Config)
hidden_size = config.hidden_size
intermediate_size = config.intermediate_size
# Feed-forward input projection.
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=vllm_config.quant_config,
prefix=f"{prefix}.gate_up_proj",
)
# Activation function.
self.act_fn = SiluAndMul()
# Feed-forward output projection.
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=vllm_config.quant_config,
prefix=f"{prefix}.down_proj",
)
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class Olmo2DecoderLayer(nn.Module):
"""
This is a typical transformer block where the output is
computed as ``MLP(LN(x + Attention(LN(x))))``
(plus another skip connection).
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
assert isinstance(config, Olmo2Config)
# Attention block.
self.self_attn = Olmo2Attention(vllm_config=vllm_config,
prefix=f"{prefix}.self_attn")
# MLP block.
self.mlp = Olmo2MLP(vllm_config=vllm_config, prefix=f"{prefix}.mlp")
# LayerNorm
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_feedforward_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
# Attention block.
residual = hidden_states
hidden_states = self.self_attn(positions, hidden_states, kv_cache,
attn_metadata)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = hidden_states + residual
# MLP block.
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Olmo2Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
self.config = vllm_config.model_config.hf_config
assert isinstance(self.config, Olmo2Config)
self.embed_tokens = VocabParallelEmbedding(
self.config.vocab_size,
self.config.hidden_size,
prefix=f"{prefix}.embed_tokens",
)
self.start_layer, self.end_layer, self.layers = make_layers(
self.config.num_hidden_layers,
lambda prefix: Olmo2DecoderLayer(vllm_config=vllm_config,
prefix=prefix),
prefix=f"{prefix}.layers",
)
self.norm = RMSNorm(
self.config.hidden_size,
eps=self.config.rms_norm_eps,
)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
self.config.hidden_size))
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
) -> Union[torch.Tensor, IntermediateTensors]:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
"""
if get_pp_group().is_first_rank:
# Get embeddings of input.
# shape: (batch_size, seq_len, d_model)
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
hidden_states = inputs_embeds
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
assert isinstance(hidden_states, torch.Tensor)
# Apply blocks one-by-one.
for i in range(self.start_layer, self.end_layer):
# shape: (batch_size, seq_len, d_model)
hidden_states = self.layers[i](
positions,
hidden_states,
kv_caches[i - self.start_layer],
attn_metadata,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
# Apply final layer norm.
# shape: (batch_size, seq_len or 1, d_model)
hidden_states = self.norm(hidden_states)
return hidden_states
class Olmo2ForCausalLM(nn.Module, SupportsPP):
"""
Extremely barebones HF model wrapper.
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
assert isinstance(config, Olmo2Config)
self.config = config
self.model = Olmo2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
quant_config=vllm_config.quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if is_pp_missing_parameter(name, self):
continue
# With tie_word_embeddings, we can skip lm_head.weight
# The weight might appear unnecessarily in the files if the model is
# processed with quantization, LoRA, fine-tuning, etc.
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader # type: ignore
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -74,6 +74,7 @@ _TEXT_GENERATION_MODELS = {
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
"NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"),
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
"Olmo2ForCausalLM": ("olmo2", "Olmo2ForCausalLM"),
"OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
"OrionForCausalLM": ("orion", "OrionForCausalLM"),

View File

@ -28,8 +28,8 @@ from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
MedusaConfig, MllamaConfig,
MLPSpeculatorConfig, MPTConfig,
NemotronConfig, NVLM_D_Config,
RWConfig, SolarConfig,
UltravoxConfig)
Olmo2Config, RWConfig,
SolarConfig, UltravoxConfig)
# yapf: enable
from vllm.transformers_utils.utils import check_gguf_file
from vllm.utils import resolve_obj_by_qualname
@ -62,6 +62,7 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
"internvl_chat": InternVLChatConfig,
"nemotron": NemotronConfig,
"NVLM_D": NVLM_D_Config,
"olmo2": Olmo2Config,
"solar": SolarConfig,
"ultravox": UltravoxConfig,
**_CONFIG_REGISTRY_OVERRIDE_HF

View File

@ -15,6 +15,7 @@ from vllm.transformers_utils.configs.mlp_speculator import MLPSpeculatorConfig
from vllm.transformers_utils.configs.mpt import MPTConfig
from vllm.transformers_utils.configs.nemotron import NemotronConfig
from vllm.transformers_utils.configs.nvlm_d import NVLM_D_Config
from vllm.transformers_utils.configs.olmo2 import Olmo2Config
from vllm.transformers_utils.configs.solar import SolarConfig
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
@ -33,6 +34,7 @@ __all__ = [
"MLPSpeculatorConfig",
"NemotronConfig",
"NVLM_D_Config",
"Olmo2Config",
"SolarConfig",
"UltravoxConfig",
]

View File

@ -0,0 +1,166 @@
# yapf: disable
# ruff: noqa: E501
# coding=utf-8
# Copied from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/olmo2/configuration_olmo2.py
"""OLMo 2 configuration."""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Olmo2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Olmo2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
```python
>>> from transformers import Olmo2Model, Olmo2Config
>>> # Initializing a Olmo2 7B style configuration
>>> configuration = Olmo2Config()
>>> # Initializing a model from the Olmo2 7B style configuration
>>> model = Olmo2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "olmo2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rms_norm_eps=1e-5,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.rms_norm_eps = rms_norm_eps
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")