mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:26:00 +08:00
[Model] Add OLMo November 2024 model (#10503)
This commit is contained in:
parent
1b583cfefa
commit
9db713a1dc
@ -234,6 +234,11 @@ Text Generation
|
||||
- :code:`allenai/OLMo-1B-hf`, :code:`allenai/OLMo-7B-hf`, etc.
|
||||
-
|
||||
- ✅︎
|
||||
* - :code:`OLMo2ForCausalLM`
|
||||
- OLMo2
|
||||
- :code:`allenai/OLMo2-7B-1124`, etc.
|
||||
-
|
||||
- ✅︎
|
||||
* - :code:`OLMoEForCausalLM`
|
||||
- OLMoE
|
||||
- :code:`allenai/OLMoE-1B-7B-0924`, :code:`allenai/OLMoE-1B-7B-0924-Instruct`, etc.
|
||||
|
||||
@ -167,6 +167,7 @@ TEXT_GENERATION_MODELS = {
|
||||
"mosaicml/mpt-7b": PPTestSettings.fast(),
|
||||
"nvidia/Minitron-8B-Base": PPTestSettings.fast(),
|
||||
"allenai/OLMo-1B-hf": PPTestSettings.fast(),
|
||||
"shanearora/OLMo-7B-1124-hf": PPTestSettings.fast(),
|
||||
"allenai/OLMoE-1B-7B-0924-Instruct": PPTestSettings.fast(),
|
||||
"facebook/opt-iml-max-1.3b": PPTestSettings.fast(),
|
||||
"OrionStarAI/Orion-14B-Chat": PPTestSettings.fast(trust_remote_code=True),
|
||||
|
||||
@ -93,6 +93,7 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"MPTForCausalLM": _HfExamplesInfo("mosaicml/mpt-7b"),
|
||||
"NemotronForCausalLM": _HfExamplesInfo("nvidia/Minitron-8B-Base"),
|
||||
"OlmoForCausalLM": _HfExamplesInfo("allenai/OLMo-1B-hf"),
|
||||
"Olmo2ForCausalLM": _HfExamplesInfo("shanearora/OLMo-7B-1124-hf"),
|
||||
"OlmoeForCausalLM": _HfExamplesInfo("allenai/OLMoE-1B-7B-0924-Instruct"),
|
||||
"OPTForCausalLM": _HfExamplesInfo("facebook/opt-iml-max-1.3b"),
|
||||
"OrionForCausalLM": _HfExamplesInfo("OrionStarAI/Orion-14B-Chat",
|
||||
|
||||
432
vllm/model_executor/models/olmo2.py
Normal file
432
vllm/model_executor/models/olmo2.py
Normal file
@ -0,0 +1,432 @@
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/olmo2/modeling_olmo2.py
|
||||
# Copyright 2024 The vLLM team.
|
||||
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only OLMo2 model compatible with HuggingFace weights."""
|
||||
|
||||
from functools import partial
|
||||
from typing import Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||
from vllm.distributed.communication_op import tensor_model_parallel_all_gather
|
||||
from vllm.distributed.parallel_state import get_tensor_model_parallel_rank
|
||||
from vllm.distributed.utils import split_tensor_along_last_dim
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.interfaces import SupportsPP
|
||||
from vllm.model_executor.models.utils import (
|
||||
is_pp_missing_parameter, make_empty_intermediate_tensors_factory,
|
||||
make_layers, maybe_prefix)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs.olmo2 import Olmo2Config
|
||||
|
||||
|
||||
class Olmo2Attention(nn.Module):
|
||||
"""
|
||||
This is the attention block where the output is computed as
|
||||
``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))``
|
||||
(plus another skip connection).
|
||||
"""
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
self.config = vllm_config.model_config.hf_config
|
||||
assert isinstance(self.config, Olmo2Config)
|
||||
|
||||
hidden_size = self.config.hidden_size
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = self.config.num_attention_heads
|
||||
|
||||
assert hidden_size % self.total_num_heads == 0
|
||||
assert self.total_num_heads % self.tp_size == 0
|
||||
|
||||
self.num_heads = self.total_num_heads // self.tp_size
|
||||
self.total_num_kv_heads = (self.config.num_key_value_heads
|
||||
or self.total_num_heads)
|
||||
if self.total_num_kv_heads >= self.tp_size:
|
||||
assert self.total_num_kv_heads % self.tp_size == 0
|
||||
else:
|
||||
assert self.tp_size % self.total_num_kv_heads == 0
|
||||
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.max_position_embeddings = self.config.max_position_embeddings
|
||||
self.rope_theta = self.config.rope_theta
|
||||
|
||||
# Attention input projection. Projects x -> (q, k, v)
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
quant_config=vllm_config.quant_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
)
|
||||
|
||||
self.tp_rank = get_tensor_model_parallel_rank()
|
||||
self.k_norm = RMSNorm(
|
||||
self.total_num_kv_heads * self.head_dim,
|
||||
eps=self.config.rms_norm_eps,
|
||||
)
|
||||
self.q_norm = RMSNorm(self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps)
|
||||
|
||||
# Rotary embeddings.
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=self.max_position_embeddings,
|
||||
base=self.rope_theta, # type: ignore
|
||||
)
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.attn = Attention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=vllm_config.cache_config,
|
||||
quant_config=vllm_config.quant_config,
|
||||
prefix=prefix,
|
||||
)
|
||||
|
||||
# Attention output projection.
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=vllm_config.quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
|
||||
def _apply_qk_norm(self, q: torch.Tensor,
|
||||
k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if self.tp_size > 1:
|
||||
q = tensor_model_parallel_all_gather(q.contiguous())
|
||||
k = tensor_model_parallel_all_gather(k.contiguous())
|
||||
q = self.q_norm.forward_native(q)
|
||||
k = self.k_norm.forward_native(k)
|
||||
if self.tp_size > 1:
|
||||
splitter = partial(split_tensor_along_last_dim,
|
||||
num_partitions=self.tp_size)
|
||||
q = splitter(q)[self.tp_rank]
|
||||
k = splitter(k)[self.tp_rank]
|
||||
return q, k
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
q, k = self._apply_qk_norm(q, k)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class Olmo2MLP(nn.Module):
|
||||
"""
|
||||
This is the MLP block where the output is computed as
|
||||
``MLP(x)`` in ``LN(MLP(x + LN(Attention(x))))``
|
||||
(plus another skip connection).
|
||||
"""
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
assert isinstance(config, Olmo2Config)
|
||||
hidden_size = config.hidden_size
|
||||
intermediate_size = config.intermediate_size
|
||||
|
||||
# Feed-forward input projection.
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size,
|
||||
[intermediate_size] * 2,
|
||||
bias=False,
|
||||
quant_config=vllm_config.quant_config,
|
||||
prefix=f"{prefix}.gate_up_proj",
|
||||
)
|
||||
|
||||
# Activation function.
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
# Feed-forward output projection.
|
||||
self.down_proj = RowParallelLinear(
|
||||
intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=vllm_config.quant_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class Olmo2DecoderLayer(nn.Module):
|
||||
"""
|
||||
This is a typical transformer block where the output is
|
||||
computed as ``MLP(LN(x + Attention(LN(x))))``
|
||||
(plus another skip connection).
|
||||
"""
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
assert isinstance(config, Olmo2Config)
|
||||
# Attention block.
|
||||
self.self_attn = Olmo2Attention(vllm_config=vllm_config,
|
||||
prefix=f"{prefix}.self_attn")
|
||||
|
||||
# MLP block.
|
||||
self.mlp = Olmo2MLP(vllm_config=vllm_config, prefix=f"{prefix}.mlp")
|
||||
|
||||
# LayerNorm
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
self.post_feedforward_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
# Attention block.
|
||||
residual = hidden_states
|
||||
hidden_states = self.self_attn(positions, hidden_states, kv_cache,
|
||||
attn_metadata)
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
# MLP block.
|
||||
residual = hidden_states
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Olmo2Model(nn.Module):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
self.config = vllm_config.model_config.hf_config
|
||||
assert isinstance(self.config, Olmo2Config)
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.config.vocab_size,
|
||||
self.config.hidden_size,
|
||||
prefix=f"{prefix}.embed_tokens",
|
||||
)
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
self.config.num_hidden_layers,
|
||||
lambda prefix: Olmo2DecoderLayer(vllm_config=vllm_config,
|
||||
prefix=prefix),
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
self.norm = RMSNorm(
|
||||
self.config.hidden_size,
|
||||
eps=self.config.rms_norm_eps,
|
||||
)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(["hidden_states"],
|
||||
self.config.hidden_size))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors],
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
"""
|
||||
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
||||
"""
|
||||
if get_pp_group().is_first_rank:
|
||||
# Get embeddings of input.
|
||||
# shape: (batch_size, seq_len, d_model)
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
# embed positions
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
assert isinstance(hidden_states, torch.Tensor)
|
||||
|
||||
# Apply blocks one-by-one.
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
# shape: (batch_size, seq_len, d_model)
|
||||
hidden_states = self.layers[i](
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i - self.start_layer],
|
||||
attn_metadata,
|
||||
)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({"hidden_states": hidden_states})
|
||||
|
||||
# Apply final layer norm.
|
||||
# shape: (batch_size, seq_len or 1, d_model)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Olmo2ForCausalLM(nn.Module, SupportsPP):
|
||||
"""
|
||||
Extremely barebones HF model wrapper.
|
||||
"""
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
assert isinstance(config, Olmo2Config)
|
||||
self.config = config
|
||||
self.model = Olmo2Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head = self.model.embed_tokens
|
||||
else:
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
quant_config=vllm_config.quant_config,
|
||||
prefix=maybe_prefix(prefix, "lm_head"),
|
||||
)
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.sampler = Sampler()
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
hidden_states = self.model(
|
||||
input_ids=input_ids,
|
||||
positions=positions,
|
||||
kv_caches=kv_caches,
|
||||
attn_metadata=attn_metadata,
|
||||
intermediate_tensors=intermediate_tensors,
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
|
||||
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if ("rotary_emb.cos_cached" in name
|
||||
or "rotary_emb.sin_cached" in name):
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
# With tie_word_embeddings, we can skip lm_head.weight
|
||||
# The weight might appear unnecessarily in the files if the model is
|
||||
# processed with quantization, LoRA, fine-tuning, etc.
|
||||
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
||||
continue
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader # type: ignore
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
@ -74,6 +74,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
|
||||
"NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"),
|
||||
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
|
||||
"Olmo2ForCausalLM": ("olmo2", "Olmo2ForCausalLM"),
|
||||
"OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"),
|
||||
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
|
||||
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
|
||||
|
||||
@ -28,8 +28,8 @@ from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
|
||||
MedusaConfig, MllamaConfig,
|
||||
MLPSpeculatorConfig, MPTConfig,
|
||||
NemotronConfig, NVLM_D_Config,
|
||||
RWConfig, SolarConfig,
|
||||
UltravoxConfig)
|
||||
Olmo2Config, RWConfig,
|
||||
SolarConfig, UltravoxConfig)
|
||||
# yapf: enable
|
||||
from vllm.transformers_utils.utils import check_gguf_file
|
||||
from vllm.utils import resolve_obj_by_qualname
|
||||
@ -62,6 +62,7 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
|
||||
"internvl_chat": InternVLChatConfig,
|
||||
"nemotron": NemotronConfig,
|
||||
"NVLM_D": NVLM_D_Config,
|
||||
"olmo2": Olmo2Config,
|
||||
"solar": SolarConfig,
|
||||
"ultravox": UltravoxConfig,
|
||||
**_CONFIG_REGISTRY_OVERRIDE_HF
|
||||
|
||||
@ -15,6 +15,7 @@ from vllm.transformers_utils.configs.mlp_speculator import MLPSpeculatorConfig
|
||||
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||
from vllm.transformers_utils.configs.nemotron import NemotronConfig
|
||||
from vllm.transformers_utils.configs.nvlm_d import NVLM_D_Config
|
||||
from vllm.transformers_utils.configs.olmo2 import Olmo2Config
|
||||
from vllm.transformers_utils.configs.solar import SolarConfig
|
||||
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
|
||||
|
||||
@ -33,6 +34,7 @@ __all__ = [
|
||||
"MLPSpeculatorConfig",
|
||||
"NemotronConfig",
|
||||
"NVLM_D_Config",
|
||||
"Olmo2Config",
|
||||
"SolarConfig",
|
||||
"UltravoxConfig",
|
||||
]
|
||||
166
vllm/transformers_utils/configs/olmo2.py
Normal file
166
vllm/transformers_utils/configs/olmo2.py
Normal file
@ -0,0 +1,166 @@
|
||||
# yapf: disable
|
||||
# ruff: noqa: E501
|
||||
# coding=utf-8
|
||||
# Copied from
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/olmo2/configuration_olmo2.py
|
||||
"""OLMo 2 configuration."""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class Olmo2Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 50304):
|
||||
Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`Olmo2Model`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*, defaults to 1):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*):
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 50279):
|
||||
End of stream token id.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||||
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
||||
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||||
these scaling strategies behave:
|
||||
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
||||
experimental feature, subject to breaking API changes in future versions.
|
||||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon used by the rms normalization layers.
|
||||
|
||||
```python
|
||||
>>> from transformers import Olmo2Model, Olmo2Config
|
||||
|
||||
>>> # Initializing a Olmo2 7B style configuration
|
||||
>>> configuration = Olmo2Config()
|
||||
|
||||
>>> # Initializing a model from the Olmo2 7B style configuration
|
||||
>>> model = Olmo2Model(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```
|
||||
"""
|
||||
|
||||
model_type = "olmo2"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=50304,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
use_cache=True,
|
||||
pad_token_id=1,
|
||||
bos_token_id=None,
|
||||
eos_token_id=50279,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
rms_norm_eps=1e-5,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self._rope_scaling_validation()
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||
)
|
||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||||
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
||||
Loading…
x
Reference in New Issue
Block a user