[bugfix] [AMD] add multi-step advance_step to ROCmFlashAttentionMetadata (#8474)

This commit is contained in:
William Lin 2024-09-19 20:49:54 -07:00 committed by GitHub
parent 18ae428a0d
commit 9e5ec35b1f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 58 additions and 2 deletions

View File

@ -1,6 +1,6 @@
"""Attention layer ROCm GPUs."""
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
import torch
@ -15,6 +15,9 @@ from vllm.attention.ops.paged_attn import (PagedAttention,
from vllm.logger import init_logger
from vllm.platforms import current_platform
if TYPE_CHECKING:
from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata
logger = init_logger(__name__)
_PARTITION_SIZE_ROCM = 512
@ -180,6 +183,59 @@ class ROCmFlashAttentionMetadata(AttentionMetadata, PagedAttentionMetadata):
)
return self._cached_decode_metadata
def advance_step(self, model_input: "ModelInputForGPUWithSamplingMetadata",
sampled_token_ids: Optional[torch.Tensor],
block_size: int, num_seqs: int, num_queries: int):
"""
Update metadata in-place to advance one decode step.
"""
# When using cudagraph, the num_seqs is padded to the next captured
# batch sized, but num_queries tracks the actual number of requests in
# the batch. For --enforce-eager mode, num_seqs == num_queries
if num_seqs != num_queries:
assert num_seqs > num_queries
assert self.use_cuda_graph
assert self.num_prefills == 0
assert self.num_prefill_tokens == 0
assert self.num_decode_tokens == num_seqs
assert self.slot_mapping.shape == (num_seqs, )
assert self.seq_lens is not None
assert len(self.seq_lens) == num_seqs
assert self.seq_lens_tensor is not None
assert self.seq_lens_tensor.shape == (num_seqs, )
assert self.max_query_len == 1
assert self.max_prefill_seq_len == 0
assert self.max_decode_seq_len == max(self.seq_lens)
assert self.query_start_loc is not None
assert self.query_start_loc.shape == (num_queries + 1, )
assert self.seq_start_loc is not None
assert self.seq_start_loc.shape == (num_seqs + 1, )
assert self.context_lens_tensor is not None
assert self.context_lens_tensor.shape == (num_queries, )
assert self.block_tables is not None
assert self.block_tables.shape[0] == num_seqs
# Update query lengths. Note that we update only queries and not seqs,
# since tensors may be padded due to captured cuda graph batch size
for i in range(num_queries):
self.seq_lens[i] += 1
self.max_decode_seq_len = max(self.seq_lens)
ops.advance_step_flashattn(num_seqs=num_seqs,
num_queries=num_queries,
block_size=block_size,
input_tokens=model_input.input_tokens,
sampled_token_ids=sampled_token_ids,
input_positions=model_input.input_positions,
seq_lens=self.seq_lens_tensor,
slot_mapping=self.slot_mapping,
block_tables=self.block_tables)
class ROCmFlashAttentionMetadataBuilder(
CommonMetadataBuilder[ROCmFlashAttentionMetadata]):

View File

@ -29,7 +29,7 @@ if TYPE_CHECKING:
logger = init_logger(__name__)
MULTI_STEP_ATTENTION_BACKENDS = ["flash-attn", "flashinfer"]
MULTI_STEP_ATTENTION_BACKENDS = ["flash-attn", "rocm-flash-attn", "flashinfer"]
def seq_output_builder():