mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:35:24 +08:00
[Kernel] register punica functions as torch ops (#7591)
This commit is contained in:
parent
d4f0f17b02
commit
9f69856356
@ -5,8 +5,6 @@ Punica: Multi-Tenant LoRA Serving.
|
||||
https://arxiv.org/abs/2310.18547
|
||||
"""
|
||||
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
@ -86,14 +84,13 @@ def _bgmv_expand_kernel(
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def bgmv_expand(
|
||||
def _bgmv_expand(
|
||||
inputs: torch.Tensor,
|
||||
lora_b_weights: torch.Tensor,
|
||||
output_tensor: torch.Tensor,
|
||||
lora_indices_tensor: torch.Tensor,
|
||||
add_inputs: bool = True,
|
||||
override_config: Optional[Dict[str, int]] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
inputs (torch.Tensor): input tensor
|
||||
@ -105,10 +102,7 @@ def bgmv_expand(
|
||||
batches (int): batch size
|
||||
add_inputs (bool, optional): Defaults to False. adds the final lora
|
||||
results to the output.
|
||||
override_config (Optional[Dict[str, int]], optional): Defaults to None.
|
||||
Triton grid config
|
||||
"""
|
||||
|
||||
assert inputs.dtype in [torch.float16, torch.bfloat16, torch.float32]
|
||||
assert lora_b_weights.dtype in [
|
||||
torch.float16,
|
||||
@ -138,10 +132,7 @@ def bgmv_expand(
|
||||
]:
|
||||
CAST_TYPE = True
|
||||
batches = lora_indices_tensor.size(0)
|
||||
if override_config:
|
||||
config = override_config
|
||||
else:
|
||||
config = get_lora_op_configs("expand", batches, N)
|
||||
config = get_lora_op_configs("expand", batches, N)
|
||||
grid = lambda META: (
|
||||
META["SPLIT_N"],
|
||||
batches,
|
||||
@ -167,3 +158,8 @@ def bgmv_expand(
|
||||
**config,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
bgmv_expand = torch.library.custom_op("lora::bgmv_expand",
|
||||
_bgmv_expand,
|
||||
mutates_args=["output_tensor"])
|
||||
|
||||
@ -5,8 +5,6 @@ Punica: Multi-Tenant LoRA Serving.
|
||||
https://arxiv.org/abs/2310.18547
|
||||
"""
|
||||
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
@ -89,7 +87,7 @@ def _bgmv_expand_slice_kernel(
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def bgmv_expand_slice(
|
||||
def _bgmv_expand_slice(
|
||||
inputs: torch.Tensor,
|
||||
lora_b_weights: torch.Tensor,
|
||||
output_tensor: torch.Tensor,
|
||||
@ -97,8 +95,7 @@ def bgmv_expand_slice(
|
||||
slice_offset: int,
|
||||
slice_size: int,
|
||||
add_inputs: bool = True,
|
||||
override_config: Optional[Dict[str, int]] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
inputs (torch.Tensor): input tensor
|
||||
@ -111,10 +108,7 @@ def bgmv_expand_slice(
|
||||
slice_size (int): current output_tensor's size
|
||||
batches (int): batch size
|
||||
add_inputs (bool, optional): Defaults to False.
|
||||
override_config (Optional[Dict[str, int]], optional): Defaults to None.
|
||||
Triton grid config
|
||||
"""
|
||||
|
||||
assert inputs.dtype in [torch.float16, torch.bfloat16, torch.float32]
|
||||
assert lora_b_weights.dtype in [
|
||||
torch.float16,
|
||||
@ -149,10 +143,7 @@ def bgmv_expand_slice(
|
||||
|
||||
batches = lora_indices_tensor.size(0)
|
||||
|
||||
if override_config:
|
||||
config = override_config
|
||||
else:
|
||||
config = get_lora_op_configs("expand", batches, N)
|
||||
config = get_lora_op_configs("expand", batches, N)
|
||||
|
||||
grid = lambda META: (
|
||||
META["SPLIT_N"],
|
||||
@ -180,3 +171,8 @@ def bgmv_expand_slice(
|
||||
**config,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
bgmv_expand_slice = torch.library.custom_op("lora::bgmv_expand_slice",
|
||||
_bgmv_expand_slice,
|
||||
mutates_args=["output_tensor"])
|
||||
|
||||
@ -5,8 +5,6 @@ Punica: Multi-Tenant LoRA Serving.
|
||||
https://arxiv.org/abs/2310.18547
|
||||
"""
|
||||
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
@ -78,14 +76,13 @@ def _bgmv_shrink_kernel(
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def bgmv_shrink(
|
||||
def _bgmv_shrink(
|
||||
inputs: torch.Tensor,
|
||||
lora_a_weights: torch.Tensor,
|
||||
output_tensor: torch.Tensor,
|
||||
lora_indices_tensor: torch.Tensor,
|
||||
scaling: float = 1.0,
|
||||
override_config: Optional[Dict[str, int]] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
inputs (torch.Tensor): input tensor
|
||||
@ -96,8 +93,6 @@ def bgmv_shrink(
|
||||
applied.
|
||||
batches (int): batch size
|
||||
scaling (float): Scaling factor.
|
||||
override_config (Optional[Dict[str, int]], optional): Defaults to None.
|
||||
Triton grid config
|
||||
"""
|
||||
assert inputs.dtype == lora_a_weights.dtype
|
||||
assert inputs.dtype in [torch.float16, torch.bfloat16]
|
||||
@ -119,11 +114,8 @@ def bgmv_shrink(
|
||||
batches = lora_indices_tensor.size(0)
|
||||
N, K = lora_a_weights.shape[-2:] # K=hidden_size,N=rank
|
||||
BLOCK_N = triton.next_power_of_2(N)
|
||||
if override_config:
|
||||
config = override_config
|
||||
else:
|
||||
# First try to load optimal config from the file
|
||||
config = get_lora_op_configs("bgmv_shrink", batches, K)
|
||||
# First try to load optimal config from the file
|
||||
config = get_lora_op_configs("bgmv_shrink", batches, K)
|
||||
|
||||
grid = lambda META: (
|
||||
META["SPLIT_K"],
|
||||
@ -148,3 +140,8 @@ def bgmv_shrink(
|
||||
**config,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
bgmv_shrink = torch.library.custom_op("lora::bgmv_shrink",
|
||||
_bgmv_shrink,
|
||||
mutates_args=["output_tensor"])
|
||||
|
||||
@ -97,7 +97,7 @@ def _sgmv_expand_kernel(
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def sgmv_expand(
|
||||
def _sgmv_expand(
|
||||
inputs: torch.Tensor,
|
||||
lora_b_weights: torch.Tensor,
|
||||
output_tensor: torch.Tensor,
|
||||
@ -107,7 +107,7 @@ def sgmv_expand(
|
||||
batches: int,
|
||||
max_seq_length: int,
|
||||
add_inputs: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
inputs (torch.Tensor): input tensor
|
||||
@ -190,3 +190,8 @@ def sgmv_expand(
|
||||
CAST_TYPE,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
sgmv_expand = torch.library.custom_op("lora::sgmv_expand",
|
||||
_sgmv_expand,
|
||||
mutates_args=["output_tensor"])
|
||||
|
||||
@ -103,7 +103,7 @@ def _sgmv_expand_slice_kernel(
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def sgmv_expand_slice(
|
||||
def _sgmv_expand_slice(
|
||||
inputs: torch.Tensor,
|
||||
lora_b_weights: torch.Tensor,
|
||||
output_tensor: torch.Tensor,
|
||||
@ -115,7 +115,7 @@ def sgmv_expand_slice(
|
||||
slice_offset: int,
|
||||
slice_size: int,
|
||||
add_inputs: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
@ -203,3 +203,8 @@ def sgmv_expand_slice(
|
||||
CAST_TYPE,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
sgmv_expand_slice = torch.library.custom_op("lora::sgmv_expand_slice",
|
||||
_sgmv_expand_slice,
|
||||
mutates_args=["output_tensor"])
|
||||
|
||||
@ -101,7 +101,7 @@ def _sgmv_shrink_kernel(
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def sgmv_shrink(
|
||||
def _sgmv_shrink(
|
||||
inputs: torch.Tensor,
|
||||
lora_a_weights: torch.Tensor,
|
||||
output_tensor: torch.Tensor,
|
||||
@ -111,7 +111,7 @@ def sgmv_shrink(
|
||||
batches: int,
|
||||
max_seq_length: int,
|
||||
scaling: float,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
|
||||
Args:
|
||||
@ -187,3 +187,8 @@ def sgmv_shrink(
|
||||
SPLIT_K,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
sgmv_shrink = torch.library.custom_op("lora::sgmv_shrink",
|
||||
_sgmv_shrink,
|
||||
mutates_args=["output_tensor"])
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user