mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 11:41:58 +08:00
[V0 Deprecation] Remove V0 metrics code (#27215)
Signed-off-by: Nick Hill <nhill@redhat.com>
This commit is contained in:
parent
352c0c8a28
commit
a03cf9bc70
@ -1,688 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import time
|
||||
from collections import Counter as CollectionsCounter
|
||||
from typing import cast
|
||||
|
||||
import numpy as np
|
||||
import prometheus_client
|
||||
|
||||
from vllm.config import SupportsMetricsInfo, VllmConfig
|
||||
from vllm.engine.metrics_types import StatLoggerBase, Stats
|
||||
from vllm.executor.ray_utils import ray
|
||||
from vllm.logger import init_logger
|
||||
|
||||
if ray is not None:
|
||||
from ray.util import metrics as ray_metrics
|
||||
else:
|
||||
ray_metrics = None
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
prometheus_client.disable_created_metrics()
|
||||
|
||||
# The begin-* and end* here are used by the documentation generator
|
||||
# to extract the metrics definitions.
|
||||
|
||||
|
||||
# --8<-- [start:metrics-definitions]
|
||||
class Metrics:
|
||||
"""
|
||||
vLLM uses a multiprocessing-based frontend for the OpenAI server.
|
||||
This means that we need to run prometheus_client in multiprocessing mode
|
||||
See https://prometheus.github.io/client_python/multiprocess/ for more
|
||||
details on limitations.
|
||||
"""
|
||||
|
||||
labelname_finish_reason = "finished_reason"
|
||||
labelname_waiting_lora_adapters = "waiting_lora_adapters"
|
||||
labelname_running_lora_adapters = "running_lora_adapters"
|
||||
labelname_max_lora = "max_lora"
|
||||
_gauge_cls = prometheus_client.Gauge
|
||||
_counter_cls = prometheus_client.Counter
|
||||
_histogram_cls = prometheus_client.Histogram
|
||||
|
||||
def __init__(self, labelnames: list[str], vllm_config: VllmConfig):
|
||||
# Unregister any existing vLLM collectors (for CI/CD)
|
||||
self._unregister_vllm_metrics()
|
||||
|
||||
max_model_len = vllm_config.model_config.max_model_len
|
||||
|
||||
# Use this flag to hide metrics that were deprecated in
|
||||
# a previous release and which will be removed future
|
||||
self.show_hidden_metrics = vllm_config.observability_config.show_hidden_metrics
|
||||
|
||||
# System stats
|
||||
# Scheduler State
|
||||
self.gauge_scheduler_running = self._gauge_cls(
|
||||
name="vllm:num_requests_running",
|
||||
documentation="Number of requests currently running on GPU.",
|
||||
labelnames=labelnames,
|
||||
multiprocess_mode="sum",
|
||||
)
|
||||
self.gauge_scheduler_waiting = self._gauge_cls(
|
||||
name="vllm:num_requests_waiting",
|
||||
documentation="Number of requests waiting to be processed.",
|
||||
labelnames=labelnames,
|
||||
multiprocess_mode="sum",
|
||||
)
|
||||
self.gauge_lora_info = self._gauge_cls(
|
||||
name="vllm:lora_requests_info",
|
||||
documentation="Running stats on lora requests.",
|
||||
labelnames=[
|
||||
self.labelname_running_lora_adapters,
|
||||
self.labelname_max_lora,
|
||||
self.labelname_waiting_lora_adapters,
|
||||
],
|
||||
multiprocess_mode="livemostrecent",
|
||||
)
|
||||
|
||||
# KV Cache Usage in %
|
||||
self.gauge_gpu_cache_usage = self._gauge_cls(
|
||||
name="vllm:gpu_cache_usage_perc",
|
||||
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
|
||||
labelnames=labelnames,
|
||||
multiprocess_mode="sum",
|
||||
)
|
||||
|
||||
# Iteration stats
|
||||
self.counter_num_preemption = self._counter_cls(
|
||||
name="vllm:num_preemptions_total",
|
||||
documentation="Cumulative number of preemption from the engine.",
|
||||
labelnames=labelnames,
|
||||
)
|
||||
self.counter_prompt_tokens = self._counter_cls(
|
||||
name="vllm:prompt_tokens_total",
|
||||
documentation="Number of prefill tokens processed.",
|
||||
labelnames=labelnames,
|
||||
)
|
||||
self.counter_generation_tokens = self._counter_cls(
|
||||
name="vllm:generation_tokens_total",
|
||||
documentation="Number of generation tokens processed.",
|
||||
labelnames=labelnames,
|
||||
)
|
||||
self.histogram_iteration_tokens = self._histogram_cls(
|
||||
name="vllm:iteration_tokens_total",
|
||||
documentation="Histogram of number of tokens per engine_step.",
|
||||
labelnames=labelnames,
|
||||
buckets=[1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
|
||||
)
|
||||
self.histogram_time_to_first_token = self._histogram_cls(
|
||||
name="vllm:time_to_first_token_seconds",
|
||||
documentation="Histogram of time to first token in seconds.",
|
||||
labelnames=labelnames,
|
||||
buckets=[
|
||||
0.001,
|
||||
0.005,
|
||||
0.01,
|
||||
0.02,
|
||||
0.04,
|
||||
0.06,
|
||||
0.08,
|
||||
0.1,
|
||||
0.25,
|
||||
0.5,
|
||||
0.75,
|
||||
1.0,
|
||||
2.5,
|
||||
5.0,
|
||||
7.5,
|
||||
10.0,
|
||||
20.0,
|
||||
40.0,
|
||||
80.0,
|
||||
160.0,
|
||||
640.0,
|
||||
2560.0,
|
||||
],
|
||||
)
|
||||
# Deprecated in 0.11 - Renamed as vllm:inter_token_latency_seconds
|
||||
# TODO: in 0.12, only enable if show_hidden_metrics=True
|
||||
self.histogram_time_per_output_token = self._histogram_cls(
|
||||
name="vllm:time_per_output_token_seconds",
|
||||
documentation=(
|
||||
"Histogram of time per output token in seconds."
|
||||
"DEPRECATED: Use vllm:inter_token_latency_seconds instead."
|
||||
),
|
||||
labelnames=labelnames,
|
||||
buckets=[
|
||||
0.01,
|
||||
0.025,
|
||||
0.05,
|
||||
0.075,
|
||||
0.1,
|
||||
0.15,
|
||||
0.2,
|
||||
0.3,
|
||||
0.4,
|
||||
0.5,
|
||||
0.75,
|
||||
1.0,
|
||||
2.5,
|
||||
5.0,
|
||||
7.5,
|
||||
10.0,
|
||||
20.0,
|
||||
40.0,
|
||||
80.0,
|
||||
],
|
||||
)
|
||||
self.histogram_inter_token_latency = self._histogram_cls(
|
||||
name="vllm:inter_token_latency_seconds",
|
||||
documentation="Histogram of inter token latency in seconds.",
|
||||
labelnames=labelnames,
|
||||
buckets=[
|
||||
0.01,
|
||||
0.025,
|
||||
0.05,
|
||||
0.075,
|
||||
0.1,
|
||||
0.15,
|
||||
0.2,
|
||||
0.3,
|
||||
0.4,
|
||||
0.5,
|
||||
0.75,
|
||||
1.0,
|
||||
2.5,
|
||||
5.0,
|
||||
7.5,
|
||||
10.0,
|
||||
20.0,
|
||||
40.0,
|
||||
80.0,
|
||||
],
|
||||
)
|
||||
|
||||
# Request stats
|
||||
# Latency
|
||||
request_latency_buckets = [
|
||||
0.3,
|
||||
0.5,
|
||||
0.8,
|
||||
1.0,
|
||||
1.5,
|
||||
2.0,
|
||||
2.5,
|
||||
5.0,
|
||||
10.0,
|
||||
15.0,
|
||||
20.0,
|
||||
30.0,
|
||||
40.0,
|
||||
50.0,
|
||||
60.0,
|
||||
120.0,
|
||||
240.0,
|
||||
480.0,
|
||||
960.0,
|
||||
1920.0,
|
||||
7680.0,
|
||||
]
|
||||
self.histogram_e2e_time_request = self._histogram_cls(
|
||||
name="vllm:e2e_request_latency_seconds",
|
||||
documentation="Histogram of end to end request latency in seconds.",
|
||||
labelnames=labelnames,
|
||||
buckets=request_latency_buckets,
|
||||
)
|
||||
self.histogram_queue_time_request = self._histogram_cls(
|
||||
name="vllm:request_queue_time_seconds",
|
||||
documentation="Histogram of time spent in WAITING phase for request.",
|
||||
labelnames=labelnames,
|
||||
buckets=request_latency_buckets,
|
||||
)
|
||||
self.histogram_inference_time_request = self._histogram_cls(
|
||||
name="vllm:request_inference_time_seconds",
|
||||
documentation="Histogram of time spent in RUNNING phase for request.",
|
||||
labelnames=labelnames,
|
||||
buckets=request_latency_buckets,
|
||||
)
|
||||
self.histogram_prefill_time_request = self._histogram_cls(
|
||||
name="vllm:request_prefill_time_seconds",
|
||||
documentation="Histogram of time spent in PREFILL phase for request.",
|
||||
labelnames=labelnames,
|
||||
buckets=request_latency_buckets,
|
||||
)
|
||||
self.histogram_decode_time_request = self._histogram_cls(
|
||||
name="vllm:request_decode_time_seconds",
|
||||
documentation="Histogram of time spent in DECODE phase for request.",
|
||||
labelnames=labelnames,
|
||||
buckets=request_latency_buckets,
|
||||
)
|
||||
|
||||
# Metadata
|
||||
self.histogram_num_prompt_tokens_request = self._histogram_cls(
|
||||
name="vllm:request_prompt_tokens",
|
||||
documentation="Number of prefill tokens processed.",
|
||||
labelnames=labelnames,
|
||||
buckets=build_1_2_5_buckets(max_model_len),
|
||||
)
|
||||
self.histogram_num_generation_tokens_request = self._histogram_cls(
|
||||
name="vllm:request_generation_tokens",
|
||||
documentation="Number of generation tokens processed.",
|
||||
labelnames=labelnames,
|
||||
buckets=build_1_2_5_buckets(max_model_len),
|
||||
)
|
||||
self.histogram_max_num_generation_tokens_request = self._histogram_cls(
|
||||
name="vllm:request_max_num_generation_tokens",
|
||||
documentation="Histogram of maximum number of requested generation tokens.",
|
||||
labelnames=labelnames,
|
||||
buckets=build_1_2_5_buckets(max_model_len),
|
||||
)
|
||||
self.histogram_n_request = self._histogram_cls(
|
||||
name="vllm:request_params_n",
|
||||
documentation="Histogram of the n request parameter.",
|
||||
labelnames=labelnames,
|
||||
buckets=[1, 2, 5, 10, 20],
|
||||
)
|
||||
self.histogram_max_tokens_request = self._histogram_cls(
|
||||
name="vllm:request_params_max_tokens",
|
||||
documentation="Histogram of the max_tokens request parameter.",
|
||||
labelnames=labelnames,
|
||||
buckets=build_1_2_5_buckets(max_model_len),
|
||||
)
|
||||
self.counter_request_success = self._counter_cls(
|
||||
name="vllm:request_success_total",
|
||||
documentation="Count of successfully processed requests.",
|
||||
labelnames=labelnames + [Metrics.labelname_finish_reason],
|
||||
)
|
||||
|
||||
# --8<-- [end:metrics-definitions]
|
||||
|
||||
def _unregister_vllm_metrics(self) -> None:
|
||||
for collector in list(prometheus_client.REGISTRY._collector_to_names):
|
||||
if hasattr(collector, "_name") and "vllm" in collector._name:
|
||||
prometheus_client.REGISTRY.unregister(collector)
|
||||
|
||||
|
||||
class _RayGaugeWrapper:
|
||||
"""Wraps around ray.util.metrics.Gauge to provide same API as
|
||||
prometheus_client.Gauge"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
documentation: str = "",
|
||||
labelnames: list[str] | None = None,
|
||||
multiprocess_mode: str = "",
|
||||
):
|
||||
del multiprocess_mode
|
||||
labelnames_tuple = tuple(labelnames) if labelnames else None
|
||||
self._gauge = ray_metrics.Gauge(
|
||||
name=name, description=documentation, tag_keys=labelnames_tuple
|
||||
)
|
||||
|
||||
def labels(self, **labels):
|
||||
self._gauge.set_default_tags(labels)
|
||||
return self
|
||||
|
||||
def set(self, value: int | float):
|
||||
return self._gauge.set(value)
|
||||
|
||||
def set_to_current_time(self):
|
||||
# ray metrics doesn't have set_to_current time, https://docs.ray.io/en/latest/_modules/ray/util/metrics.html
|
||||
return self._gauge.set(time.time())
|
||||
|
||||
|
||||
class _RayCounterWrapper:
|
||||
"""Wraps around ray.util.metrics.Counter to provide same API as
|
||||
prometheus_client.Counter"""
|
||||
|
||||
def __init__(
|
||||
self, name: str, documentation: str = "", labelnames: list[str] | None = None
|
||||
):
|
||||
labelnames_tuple = tuple(labelnames) if labelnames else None
|
||||
self._counter = ray_metrics.Counter(
|
||||
name=name, description=documentation, tag_keys=labelnames_tuple
|
||||
)
|
||||
|
||||
def labels(self, **labels):
|
||||
self._counter.set_default_tags(labels)
|
||||
return self
|
||||
|
||||
def inc(self, value: int | float = 1.0):
|
||||
if value == 0:
|
||||
return
|
||||
return self._counter.inc(value)
|
||||
|
||||
|
||||
class _RayHistogramWrapper:
|
||||
"""Wraps around ray.util.metrics.Histogram to provide same API as
|
||||
prometheus_client.Histogram"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
documentation: str = "",
|
||||
labelnames: list[str] | None = None,
|
||||
buckets: list[float] | None = None,
|
||||
):
|
||||
labelnames_tuple = tuple(labelnames) if labelnames else None
|
||||
boundaries = buckets if buckets else []
|
||||
self._histogram = ray_metrics.Histogram(
|
||||
name=name,
|
||||
description=documentation,
|
||||
tag_keys=labelnames_tuple,
|
||||
boundaries=boundaries,
|
||||
)
|
||||
|
||||
def labels(self, **labels):
|
||||
self._histogram.set_default_tags(labels)
|
||||
return self
|
||||
|
||||
def observe(self, value: int | float):
|
||||
return self._histogram.observe(value)
|
||||
|
||||
|
||||
class RayMetrics(Metrics):
|
||||
"""
|
||||
RayMetrics is used by RayPrometheusStatLogger to log to Ray metrics.
|
||||
Provides the same metrics as Metrics but uses Ray's util.metrics library.
|
||||
"""
|
||||
|
||||
_gauge_cls: type[prometheus_client.Gauge] = cast(
|
||||
type[prometheus_client.Gauge], _RayGaugeWrapper
|
||||
)
|
||||
_counter_cls: type[prometheus_client.Counter] = cast(
|
||||
type[prometheus_client.Counter], _RayCounterWrapper
|
||||
)
|
||||
_histogram_cls: type[prometheus_client.Histogram] = cast(
|
||||
type[prometheus_client.Histogram], _RayHistogramWrapper
|
||||
)
|
||||
|
||||
def __init__(self, labelnames: list[str], vllm_config: VllmConfig):
|
||||
if ray_metrics is None:
|
||||
raise ImportError("RayMetrics requires Ray to be installed.")
|
||||
super().__init__(labelnames, vllm_config)
|
||||
|
||||
def _unregister_vllm_metrics(self) -> None:
|
||||
# No-op on purpose
|
||||
pass
|
||||
|
||||
|
||||
def build_buckets(mantissa_lst: list[int], max_value: int) -> list[int]:
|
||||
"""
|
||||
Builds a list of buckets with increasing powers of 10 multiplied by
|
||||
mantissa values until the value exceeds the specified maximum.
|
||||
|
||||
"""
|
||||
exponent = 0
|
||||
buckets: list[int] = []
|
||||
while True:
|
||||
for m in mantissa_lst:
|
||||
value = m * 10**exponent
|
||||
if value <= max_value:
|
||||
buckets.append(value)
|
||||
else:
|
||||
return buckets
|
||||
exponent += 1
|
||||
|
||||
|
||||
def build_1_2_5_buckets(max_value: int) -> list[int]:
|
||||
"""
|
||||
Example:
|
||||
>>> build_1_2_5_buckets(100)
|
||||
[1, 2, 5, 10, 20, 50, 100]
|
||||
"""
|
||||
return build_buckets([1, 2, 5], max_value)
|
||||
|
||||
|
||||
def build_1_2_3_5_8_buckets(max_value: int) -> list[int]:
|
||||
"""
|
||||
Example:
|
||||
>>> build_1_2_3_5_8_buckets(100)
|
||||
[1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100]
|
||||
"""
|
||||
return build_buckets([1, 2, 3, 5, 8], max_value)
|
||||
|
||||
|
||||
def local_interval_elapsed(now: float, last_log: float, local_interval: float) -> bool:
|
||||
elapsed_time = now - last_log
|
||||
return elapsed_time > local_interval
|
||||
|
||||
|
||||
def get_throughput(tracked_stats: list[int], now: float, last_log: float) -> float:
|
||||
return float(np.sum(tracked_stats) / (now - last_log))
|
||||
|
||||
|
||||
class LoggingStatLogger(StatLoggerBase):
|
||||
"""LoggingStatLogger is used in LLMEngine to log to Stdout."""
|
||||
|
||||
def __init__(self, local_interval: float, vllm_config: VllmConfig) -> None:
|
||||
super().__init__(local_interval, vllm_config)
|
||||
self.last_prompt_throughput: float | None = None
|
||||
self.last_generation_throughput: float | None = None
|
||||
|
||||
def log(self, stats: Stats) -> None:
|
||||
"""Called by LLMEngine.
|
||||
Logs to Stdout every self.local_interval seconds."""
|
||||
|
||||
# Save tracked stats for token counters.
|
||||
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
|
||||
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
|
||||
|
||||
# Log locally every local_interval seconds.
|
||||
if local_interval_elapsed(stats.now, self.last_local_log, self.local_interval):
|
||||
# Compute summary metrics for tracked stats (and log them
|
||||
# to prometheus if applicable).
|
||||
prompt_throughput = get_throughput(
|
||||
self.num_prompt_tokens, now=stats.now, last_log=self.last_local_log
|
||||
)
|
||||
generation_throughput = get_throughput(
|
||||
self.num_generation_tokens, now=stats.now, last_log=self.last_local_log
|
||||
)
|
||||
|
||||
log_fn = logger.info
|
||||
if not any(
|
||||
(
|
||||
prompt_throughput,
|
||||
generation_throughput,
|
||||
self.last_prompt_throughput,
|
||||
self.last_generation_throughput,
|
||||
)
|
||||
):
|
||||
# Avoid log noise on an idle production system
|
||||
log_fn = logger.debug
|
||||
|
||||
log_fn(
|
||||
"Avg prompt throughput: %.1f tokens/s, "
|
||||
"Avg generation throughput: %.1f tokens/s, "
|
||||
"Running: %d reqs, Swapped: %d reqs, "
|
||||
"Pending: %d reqs, GPU KV cache usage: %.1f%%, "
|
||||
"CPU KV cache usage: %.1f%%.",
|
||||
prompt_throughput,
|
||||
generation_throughput,
|
||||
stats.num_running_sys,
|
||||
stats.num_swapped_sys,
|
||||
stats.num_waiting_sys,
|
||||
stats.gpu_cache_usage_sys * 100,
|
||||
stats.cpu_cache_usage_sys * 100,
|
||||
)
|
||||
if (
|
||||
stats.cpu_prefix_cache_hit_rate >= 0
|
||||
or stats.gpu_prefix_cache_hit_rate >= 0
|
||||
):
|
||||
log_fn(
|
||||
"Prefix cache hit rate: GPU: %.2f%%, CPU: %.2f%%",
|
||||
stats.gpu_prefix_cache_hit_rate * 100,
|
||||
stats.cpu_prefix_cache_hit_rate * 100,
|
||||
)
|
||||
|
||||
self._reset(stats, prompt_throughput, generation_throughput)
|
||||
|
||||
def _reset(self, stats, prompt_throughput, generation_throughput) -> None:
|
||||
# Reset tracked stats for next interval.
|
||||
self.num_prompt_tokens = []
|
||||
self.num_generation_tokens = []
|
||||
self.last_local_log = stats.now
|
||||
self.last_prompt_throughput = prompt_throughput
|
||||
self.last_generation_throughput = generation_throughput
|
||||
|
||||
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class PrometheusStatLogger(StatLoggerBase):
|
||||
"""PrometheusStatLogger is used LLMEngine to log to Prometheus."""
|
||||
|
||||
_metrics_cls = Metrics
|
||||
_gauge_cls = prometheus_client.Gauge
|
||||
|
||||
def __init__(
|
||||
self, local_interval: float, labels: dict[str, str], vllm_config: VllmConfig
|
||||
) -> None:
|
||||
super().__init__(local_interval, vllm_config)
|
||||
# Prometheus metrics
|
||||
self.labels = labels
|
||||
self.metrics = self._metrics_cls(
|
||||
labelnames=list(labels.keys()), vllm_config=vllm_config
|
||||
)
|
||||
|
||||
def _log_gauge(self, gauge, data: int | float) -> None:
|
||||
# Convenience function for logging to gauge.
|
||||
gauge.labels(**self.labels).set(data)
|
||||
|
||||
def _log_counter(self, counter, data: int | float) -> None:
|
||||
# Convenience function for logging to counter.
|
||||
# Prevent ValueError from negative increment
|
||||
if data < 0:
|
||||
logger.warning("Skipping negative increment of %g to %s", data, counter)
|
||||
return
|
||||
counter.labels(**self.labels).inc(data)
|
||||
|
||||
def _log_counter_labels(
|
||||
self, counter, data: CollectionsCounter, label_key: str
|
||||
) -> None:
|
||||
# Convenience function for collection counter of labels.
|
||||
for label, count in data.items():
|
||||
counter.labels(**{**self.labels, label_key: label}).inc(count)
|
||||
|
||||
def _log_histogram(self, histogram, data: list[int] | list[float]) -> None:
|
||||
# Convenience function for logging list to histogram.
|
||||
for datum in data:
|
||||
histogram.labels(**self.labels).observe(datum)
|
||||
|
||||
def _log_gauge_string(self, gauge, data: dict[str, str]) -> None:
|
||||
gauge.labels(**data).set_to_current_time()
|
||||
|
||||
def _log_prometheus(self, stats: Stats) -> None:
|
||||
# System state data
|
||||
self._log_gauge(self.metrics.gauge_scheduler_running, stats.num_running_sys)
|
||||
self._log_gauge(self.metrics.gauge_scheduler_waiting, stats.num_waiting_sys)
|
||||
self._log_gauge(self.metrics.gauge_gpu_cache_usage, stats.gpu_cache_usage_sys)
|
||||
# Including max-lora in metric, in future this property of lora
|
||||
# config maybe extended to be dynamic.
|
||||
lora_info = {
|
||||
self.metrics.labelname_running_lora_adapters: ",".join(
|
||||
stats.running_lora_adapters
|
||||
),
|
||||
self.metrics.labelname_waiting_lora_adapters: ",".join(
|
||||
stats.waiting_lora_adapters
|
||||
),
|
||||
self.metrics.labelname_max_lora: stats.max_lora,
|
||||
}
|
||||
self._log_gauge_string(self.metrics.gauge_lora_info, lora_info)
|
||||
# Iteration level data
|
||||
self._log_counter(
|
||||
self.metrics.counter_num_preemption, stats.num_preemption_iter
|
||||
)
|
||||
self._log_counter(
|
||||
self.metrics.counter_prompt_tokens, stats.num_prompt_tokens_iter
|
||||
)
|
||||
self._log_counter(
|
||||
self.metrics.counter_generation_tokens, stats.num_generation_tokens_iter
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_iteration_tokens, [stats.num_tokens_iter]
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_time_to_first_token, stats.time_to_first_tokens_iter
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_time_per_output_token,
|
||||
stats.inter_token_latencies_iter,
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_inter_token_latency, stats.inter_token_latencies_iter
|
||||
)
|
||||
|
||||
# Request level data
|
||||
# Latency
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_e2e_time_request, stats.time_e2e_requests
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_queue_time_request, stats.time_queue_requests
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_inference_time_request, stats.time_inference_requests
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_prefill_time_request, stats.time_prefill_requests
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_decode_time_request, stats.time_decode_requests
|
||||
)
|
||||
# Metadata
|
||||
finished_reason_counter = CollectionsCounter(stats.finished_reason_requests)
|
||||
self._log_counter_labels(
|
||||
self.metrics.counter_request_success,
|
||||
finished_reason_counter,
|
||||
Metrics.labelname_finish_reason,
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_num_prompt_tokens_request,
|
||||
stats.num_prompt_tokens_requests,
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_num_generation_tokens_request,
|
||||
stats.num_generation_tokens_requests,
|
||||
)
|
||||
self._log_histogram(self.metrics.histogram_n_request, stats.n_requests)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_max_num_generation_tokens_request,
|
||||
stats.max_num_generation_tokens_requests,
|
||||
)
|
||||
self._log_histogram(
|
||||
self.metrics.histogram_max_tokens_request, stats.max_tokens_requests
|
||||
)
|
||||
|
||||
def log(self, stats: Stats):
|
||||
"""Logs to prometheus and tracked stats every iteration."""
|
||||
# Log to prometheus.
|
||||
self._log_prometheus(stats)
|
||||
|
||||
# Save tracked stats for token counters.
|
||||
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
|
||||
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
|
||||
|
||||
# Log locally every local_interval seconds.
|
||||
if local_interval_elapsed(stats.now, self.last_local_log, self.local_interval):
|
||||
# Reset tracked stats for next interval.
|
||||
self.num_prompt_tokens = []
|
||||
self.num_generation_tokens = []
|
||||
self.last_local_log = stats.now
|
||||
|
||||
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
||||
# Info type metrics are syntactic sugar for a gauge permanently set to 1
|
||||
# Since prometheus multiprocessing mode does not support Info, emulate
|
||||
# info here with a gauge.
|
||||
if type == "cache_config":
|
||||
metrics_info = obj.metrics_info()
|
||||
info_gauge = self._gauge_cls(
|
||||
name="vllm:cache_config_info",
|
||||
documentation="Information of the LLMEngine CacheConfig",
|
||||
labelnames=metrics_info.keys(),
|
||||
multiprocess_mode="mostrecent",
|
||||
)
|
||||
info_gauge.labels(**metrics_info).set(1)
|
||||
|
||||
|
||||
class RayPrometheusStatLogger(PrometheusStatLogger):
|
||||
"""RayPrometheusStatLogger uses Ray metrics instead."""
|
||||
|
||||
_metrics_cls = RayMetrics
|
||||
|
||||
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
||||
return None
|
||||
@ -1,84 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
These types are defined in this file to avoid importing vllm.engine.metrics
|
||||
and therefore importing prometheus_client.
|
||||
|
||||
This is required due to usage of Prometheus multiprocess mode to enable
|
||||
metrics after splitting out the uvicorn process from the engine process.
|
||||
|
||||
Prometheus multiprocess mode requires setting PROMETHEUS_MULTIPROC_DIR
|
||||
before prometheus_client is imported. Typically, this is done by setting
|
||||
the env variable before launch, but since we are a library, we need to
|
||||
do this in Python code and lazily import prometheus_client.
|
||||
"""
|
||||
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
|
||||
from vllm.config import SupportsMetricsInfo, VllmConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class Stats:
|
||||
"""Created by LLMEngine for use by StatLogger."""
|
||||
|
||||
now: float
|
||||
|
||||
# System stats (should have _sys suffix)
|
||||
# Scheduler State
|
||||
num_running_sys: int
|
||||
num_waiting_sys: int
|
||||
num_swapped_sys: int
|
||||
# KV Cache Usage in %
|
||||
gpu_cache_usage_sys: float
|
||||
cpu_cache_usage_sys: float
|
||||
# Prefix caching block hit rate
|
||||
cpu_prefix_cache_hit_rate: float
|
||||
gpu_prefix_cache_hit_rate: float
|
||||
|
||||
# Iteration stats (should have _iter suffix)
|
||||
num_prompt_tokens_iter: int
|
||||
num_generation_tokens_iter: int
|
||||
num_tokens_iter: int
|
||||
time_to_first_tokens_iter: list[float]
|
||||
inter_token_latencies_iter: list[float]
|
||||
num_preemption_iter: int
|
||||
|
||||
# Request stats (should have _requests suffix)
|
||||
# Latency
|
||||
time_e2e_requests: list[float]
|
||||
time_queue_requests: list[float]
|
||||
time_inference_requests: list[float]
|
||||
time_prefill_requests: list[float]
|
||||
time_decode_requests: list[float]
|
||||
# Metadata
|
||||
num_prompt_tokens_requests: list[int]
|
||||
num_generation_tokens_requests: list[int]
|
||||
n_requests: list[int]
|
||||
max_num_generation_tokens_requests: list[int]
|
||||
max_tokens_requests: list[int]
|
||||
finished_reason_requests: list[str]
|
||||
waiting_lora_adapters: list[str]
|
||||
running_lora_adapters: list[str]
|
||||
max_lora: str
|
||||
|
||||
|
||||
class StatLoggerBase(ABC):
|
||||
"""Base class for StatLogger."""
|
||||
|
||||
def __init__(self, local_interval: float, vllm_config: VllmConfig) -> None:
|
||||
# Tracked stats over current local logging interval.
|
||||
self.num_prompt_tokens: list[int] = []
|
||||
self.num_generation_tokens: list[int] = []
|
||||
self.last_local_log = time.time()
|
||||
self.local_interval = local_interval
|
||||
|
||||
@abstractmethod
|
||||
def log(self, stats: Stats) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
|
||||
raise NotImplementedError
|
||||
Loading…
x
Reference in New Issue
Block a user