[Core/Bugfix] Add FP8 K/V Scale and dtype conversion for prefix/prefill Triton Kernel (#7208)

Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
This commit is contained in:
jon-chuang 2024-08-12 15:47:41 -07:00 committed by GitHub
parent 4ddc4743d7
commit a046f86397
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 208 additions and 47 deletions

View File

@ -45,5 +45,3 @@ Here is an example of how to enable this feature:
# output w/ scaling factors: England, the United Kingdom, and one of the world's leading financial,
# output w/o scaling factors: England, located in the southeastern part of the country. It is known
Note, current prefix caching doesn't work with FP8 KV cache enabled, forward_prefix kernel should handle different KV and cache type.

View File

@ -32,5 +32,3 @@ Here is an example of how to enable this feature:
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Note, current prefix caching doesn't work with FP8 KV cache enabled, forward_prefix kernel should handle different KV and cache type.

View File

@ -6,14 +6,27 @@ prefill requests are chunked.
Run `pytest tests/models/test_chunked_prefill.py`.
"""
import pytest
from ..models.utils import check_outputs_equal
from ..models.utils import check_logprobs_close, check_outputs_equal
MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-2-7b-hf",
]
E5M2_KV_MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-2-7b-chat-hf",
]
E4M3_KV_MODELS = [
"meta-llama/Llama-2-7b-chat-hf", "nm-testing/Qwen2-1.5B-Instruct-FP8-K-V",
"nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme"
]
KV_CACHE_QUANTIZATION_PATHS = {
"meta-llama/Llama-2-7b-chat-hf":
"./tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json"
}
@pytest.mark.parametrize("model", MODELS)
@ -35,11 +48,11 @@ def test_models(
enforce_eager: bool,
tensor_parallel_size: int,
) -> None:
max_num_seqs = min(chunked_prefill_token_size, 256)
enable_chunked_prefill = False
max_num_batched_tokens = None
if chunked_prefill_token_size != -1:
enable_chunked_prefill = True
"""
Checks exact match decode between huggingface model and vllm runner with
chunked prefill.
"""
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
with hf_runner(model, dtype=dtype) as hf_model:
@ -49,7 +62,7 @@ def test_models(
model,
dtype=dtype,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=enable_chunked_prefill,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
@ -62,3 +75,78 @@ def test_models(
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("kv_cache_dtype,model",
[("fp8_e5m2", m)
for m in E5M2_KV_MODELS] + [("fp8_e4m3", m)
for m in E4M3_KV_MODELS])
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
def test_models_with_fp8_kv_cache(
vllm_runner,
example_prompts,
kv_cache_dtype: str,
model: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
) -> None:
"""
Only checks log probs match between chunked-prefill and
non-chunked-prefill version of vLLM model runner.
This test is used when there is discrepancy in kernels
/ numerics (e.g. when using lower-precision types like FP8).
"""
NUM_LOG_PROBS = 8
if model == "facebook/opt-125m":
pytest.skip(
"#7378: CUDA illegal memory access (undiagnosed) facebook/opt-125m"
)
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
extra_kwargs = {}
if model in KV_CACHE_QUANTIZATION_PATHS:
extra_kwargs["quantization_param_path"] = KV_CACHE_QUANTIZATION_PATHS[
model]
with vllm_runner(
model,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
**extra_kwargs,
) as vllm_model:
no_chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
with vllm_runner(
model,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
**extra_kwargs,
) as vllm_model:
chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
check_logprobs_close(
outputs_0_lst=no_chunked_prefill_outputs,
outputs_1_lst=chunked_prefill_outputs,
name_0="no_chunked_prefill",
name_1="chunked_prefill",
)

View File

@ -9,6 +9,7 @@ from xformers.ops.fmha.attn_bias import BlockDiagonalCausalFromBottomRightMask
from vllm.attention.backends.xformers import _make_alibi_bias
from vllm.attention.ops.prefix_prefill import context_attention_fwd
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
NUM_HEADS = [64]
NUM_QUERIES_PER_KV = [1, 8, 64]
@ -18,12 +19,14 @@ CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
SLIDING_WINDOW = [0, 16, 64, 128, 256, 512, 2048]
KV_CACHE_DTYPES = ["auto", "fp8", "fp8_e5m2"]
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("sliding_window", SLIDING_WINDOW)
@torch.inference_mode()
@ -33,6 +36,7 @@ def test_contexted_kv_attention(
head_size: int,
sliding_window: int,
dtype: torch.dtype,
kv_cache_dtype: str,
device: str,
) -> None:
random.seed(0)
@ -67,16 +71,20 @@ def test_contexted_kv_attention(
kv.uniform_(-1e-3, 1e-3)
key, value = kv.unbind(dim=1)
if kv_cache_dtype == "auto":
cache_dtype = dtype
else:
cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[kv_cache_dtype]
k_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
dtype=cache_dtype)
v_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
dtype=cache_dtype)
k = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
v = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
values = torch.arange(0, cache_size, dtype=torch.long)
@ -132,6 +140,7 @@ def test_contexted_kv_attention(
k,
v,
output,
kv_cache_dtype,
k_cache,
v_cache,
block_table,
@ -146,6 +155,7 @@ def test_contexted_kv_attention(
k,
v,
output,
kv_cache_dtype,
k_cache,
v_cache,
block_table,
@ -208,13 +218,15 @@ def test_contexted_kv_attention(
end_time = time.time()
print(f"xformers Time: {(end_time - start_time)*1000:.2f} ms")
output_ref = output_ref.reshape(output.shape)
assert torch.allclose(output_ref, output, atol=1e-6, rtol=0)
atol = 1e-3 if "fp8" in kv_cache_dtype else 1e-6
torch.testing.assert_close(output, output_ref, atol=atol, rtol=0)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPES)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_contexted_kv_attention_alibi(
@ -222,6 +234,7 @@ def test_contexted_kv_attention_alibi(
num_queries_per_kv: int,
head_size: int,
dtype: torch.dtype,
kv_cache_dtype: str,
device: str,
) -> None:
random.seed(0)
@ -282,17 +295,20 @@ def test_contexted_kv_attention_alibi(
kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
kv.uniform_(-1e-3, 1e-3)
key, value = kv.unbind(dim=1)
if kv_cache_dtype == "auto":
cache_dtype = dtype
else:
cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[kv_cache_dtype]
k_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
dtype=cache_dtype)
v_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
dtype=cache_dtype)
k = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
v = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
values = torch.arange(0, cache_size, dtype=torch.long)
@ -348,6 +364,7 @@ def test_contexted_kv_attention_alibi(
k,
v,
output,
kv_cache_dtype,
k_cache,
v_cache,
block_table,
@ -362,6 +379,7 @@ def test_contexted_kv_attention_alibi(
k,
v,
output,
kv_cache_dtype,
k_cache,
v_cache,
block_table,
@ -447,4 +465,5 @@ def test_contexted_kv_attention_alibi(
torch.cuda.synchronize()
end_time = time.time()
print(f"xformers Time: {(end_time - start_time)*1000:.2f} ms")
assert torch.allclose(output_ref, output, atol=1e-6, rtol=0)
atol = 1e-3 if "fp8" in kv_cache_dtype else 1e-6
torch.testing.assert_close(output, output_ref, atol=atol, rtol=0)

View File

@ -459,6 +459,7 @@ class ROCmFlashAttentionImpl(AttentionImpl):
query,
key,
value,
self.kv_cache_dtype,
key_cache,
value_cache,
prefill_meta.block_tables,
@ -468,6 +469,8 @@ class ROCmFlashAttentionImpl(AttentionImpl):
prefill_meta.max_query_len,
self.alibi_slopes,
self.sliding_window[0],
k_scale,
v_scale,
)
if decode_meta := attn_metadata.decode_metadata:

View File

@ -604,6 +604,7 @@ class XFormersImpl(AttentionImpl[XFormersMetadata]):
query,
key,
value,
self.kv_cache_dtype,
key_cache,
value_cache,
prefill_meta.block_tables,
@ -613,6 +614,8 @@ class XFormersImpl(AttentionImpl[XFormersMetadata]):
prefill_meta.max_query_len,
self.alibi_slopes,
self.sliding_window,
k_scale,
v_scale,
)
assert output[:num_prefill_tokens].shape == out.shape
output[:num_prefill_tokens] = out

View File

@ -90,6 +90,7 @@ class PagedAttention:
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache_dtype: str,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,

View File

@ -194,6 +194,7 @@ class PagedAttention:
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache_dtype: str,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
@ -203,6 +204,8 @@ class PagedAttention:
max_query_len: int,
alibi_slopes: Optional[torch.Tensor],
sliding_window: Optional[int],
k_scale: float,
v_scale: float,
) -> torch.Tensor:
output = torch.empty_like(query)
context_attention_fwd(
@ -210,6 +213,7 @@ class PagedAttention:
key,
value,
output,
kv_cache_dtype,
key_cache,
value_cache,
block_tables,
@ -218,6 +222,8 @@ class PagedAttention:
seq_lens_tensor,
context_lens,
max_query_len,
k_scale,
v_scale,
alibi_slopes,
sliding_window,
)

View File

@ -18,6 +18,8 @@ if triton.__version__ >= "2.1.0":
V_cache,
B_Loc,
sm_scale,
k_scale,
v_scale,
B_Start_Loc,
B_Seqlen,
B_Ctxlen,
@ -117,11 +119,16 @@ if triton.__version__ >= "2.1.0":
cur_kv_head * stride_v_cache_h +
offs_d[None, :] * stride_v_cache_d +
(start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
k = tl.load(K_cache + off_k,
k_load = tl.load(K_cache + off_k,
mask=dim_mask[:, None] &
((start_n + offs_n[None, :]) < cur_batch_ctx_len),
other=0.0) # [D,N]
if k_load.dtype.is_fp8():
k = (k_load.to(tl.float32) * k_scale).to(q.dtype)
else:
k = k_load
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) # [M,N]
qk += tl.dot(q, k)
qk = tl.where((start_n + offs_n[None, :]) < cur_batch_ctx_len, qk,
@ -161,12 +168,16 @@ if triton.__version__ >= "2.1.0":
acc_scale = l_i / l_i_new * alpha
acc = acc * acc_scale[:, None]
# update acc
v = tl.load(V_cache + off_v,
v_load = tl.load(V_cache + off_v,
mask=dim_mask[None, :] &
((start_n + offs_n[:, None]) < cur_batch_ctx_len),
other=0.0) # [N,D]
if v_load.dtype.is_fp8():
v = (v_load.to(tl.float32) * v_scale).to(q.dtype)
else:
v = v_load
p = p.to(v.dtype)
acc += tl.dot(p, v)
# # update m_i and l_i
l_i = l_i_new
@ -225,8 +236,8 @@ if triton.__version__ >= "2.1.0":
mask=dim_mask[None, :] &
((start_n + offs_n[:, None]) < cur_batch_query_len),
other=0.0)
p = p.to(v.dtype)
acc += tl.dot(p, v)
# update m_i and l_i
l_i = l_i_new
@ -336,7 +347,6 @@ if triton.__version__ >= "2.1.0":
k = tl.load(K_cache + off_k,
mask=(start_n + offs_n[None, :]) < cur_batch_ctx_len,
other=0.0)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
qk = tl.where((start_n + offs_n[None, :]) < cur_batch_ctx_len, qk,
@ -442,6 +452,8 @@ if triton.__version__ >= "2.1.0":
V_cache,
B_Loc,
sm_scale,
k_scale,
v_scale,
B_Start_Loc,
B_Seqlen,
B_Ctxlen,
@ -537,11 +549,16 @@ if triton.__version__ >= "2.1.0":
cur_kv_head * stride_v_cache_h +
offs_d[None, :] * stride_v_cache_d +
(start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
k = tl.load(K_cache + off_k,
k_load = tl.load(K_cache + off_k,
mask=dim_mask[:, None] &
((start_n + offs_n[None, :]) < cur_batch_ctx_len),
other=0.0) # [D,N]
if k_load.dtype.is_fp8():
k = (k_load.to(tl.float32) * k_scale).to(q.dtype)
else:
k = k_load
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
qk = tl.where((start_n + offs_n[None, :]) < cur_batch_ctx_len, qk,
@ -573,12 +590,16 @@ if triton.__version__ >= "2.1.0":
# acc_scale = l_i / l_i_new * alpha
acc = acc * acc_scale[:, None]
# update acc
v = tl.load(V_cache + off_v,
v_load = tl.load(V_cache + off_v,
mask=dim_mask[None, :] &
((start_n + offs_n[:, None]) < cur_batch_ctx_len),
other=0.0)
if v_load.dtype.is_fp8():
v = (v_load.to(tl.float32) * v_scale).to(q.dtype)
else:
v = v_load
p = p.to(v.dtype)
acc += tl.dot(p, v, allow_tf32=False)
# update m_i and l_i
l_i = l_i_new
@ -650,8 +671,8 @@ if triton.__version__ >= "2.1.0":
((start_n + offs_n[:, None]) <
cur_batch_seq_len - cur_batch_ctx_len),
other=0.0)
p = p.to(v.dtype)
acc += tl.dot(p, v, allow_tf32=False)
# update m_i and l_i
l_i = l_i_new
@ -675,6 +696,7 @@ if triton.__version__ >= "2.1.0":
k,
v,
o,
kv_cache_dtype: str,
k_cache,
v_cache,
b_loc,
@ -682,17 +704,41 @@ if triton.__version__ >= "2.1.0":
b_seq_len,
b_ctx_len,
max_input_len,
k_scale: float = 1.0,
v_scale: float = 1.0,
alibi_slopes=None,
sliding_window=None):
cap = current_platform.get_device_capability()
BLOCK = 128 if cap[0] >= 8 else 64
NUM_WARPS = 8
# need to reduce num. blocks when using fp32
# due to increased use of GPU shared memory
if q.dtype is torch.float32:
BLOCK = BLOCK // 2
# Conversion of FP8 Tensor from uint8 storage to
# appropriate torch.dtype for interpretation by Triton
if "fp8" in kv_cache_dtype:
assert (k_cache.dtype == torch.uint8)
assert (v_cache.dtype == torch.uint8)
if kv_cache_dtype in ("fp8", "fp8_e4m3"):
target_dtype = torch.float8_e4m3fn
elif kv_cache_dtype == "fp8_e5m2":
target_dtype = torch.float8_e5m2
else:
raise ValueError("Unsupported FP8 dtype:", kv_cache_dtype)
k_cache = k_cache.view(target_dtype)
v_cache = v_cache.view(target_dtype)
if (k_cache.dtype == torch.uint8
or v_cache.dtype == torch.uint8 and kv_cache_dtype == "auto"):
raise ValueError("kv_cache_dtype='auto' unsupported for\
FP8 KV Cache prefill kernel")
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
@ -709,7 +755,6 @@ if triton.__version__ >= "2.1.0":
if sliding_window is None or sliding_window <= 0:
sliding_window = 0
num_warps = 8 if Lk <= 64 else 8
if alibi_slopes is not None:
_fwd_kernel_alibi[grid](
q,
@ -719,6 +764,8 @@ if triton.__version__ >= "2.1.0":
v_cache,
b_loc,
sm_scale,
k_scale,
v_scale,
b_start_loc,
b_seq_len,
b_ctx_len,
@ -757,7 +804,7 @@ if triton.__version__ >= "2.1.0":
BLOCK_DMODEL=Lk,
BLOCK_DMODEL_PADDED=Lk_padded,
BLOCK_N=BLOCK,
num_warps=num_warps,
num_warps=NUM_WARPS,
num_stages=1,
)
return
@ -770,6 +817,8 @@ if triton.__version__ >= "2.1.0":
v_cache,
b_loc,
sm_scale,
k_scale,
v_scale,
b_start_loc,
b_seq_len,
b_ctx_len,
@ -807,7 +856,7 @@ if triton.__version__ >= "2.1.0":
BLOCK_DMODEL_PADDED=Lk_padded,
BLOCK_N=BLOCK,
SLIDING_WINDOW=sliding_window,
num_warps=num_warps,
num_warps=NUM_WARPS,
num_stages=1,
)
return

View File

@ -545,10 +545,6 @@ class CacheConfig:
raise NotImplementedError(
"Prefix caching is not supported with sliding window. "
"Run with --disable-sliding-window to use prefix caching.")
if self.cache_dtype == "fp8":
raise NotImplementedError(
"Prefix caching is not supported for fp8 cache_dtype. "
"Run with --kv-cache-dtype auto to use prefix caching.")
def verify_with_parallel_config(
self,