[Deprecation] Advance deprecation status (#29617)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Cyrus Leung 2025-11-28 03:04:58 +08:00 committed by GitHub
parent ea228b4491
commit a24ea5414b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 3 additions and 84 deletions

View File

@ -7,7 +7,7 @@ from typing import TYPE_CHECKING, Any, ClassVar, Literal, cast
from pydantic import Field, field_validator
from pydantic.dataclasses import dataclass
from typing_extensions import Self, deprecated
from typing_extensions import Self
from vllm.config.utils import config
from vllm.logger import init_logger
@ -224,19 +224,6 @@ class SchedulerConfig:
self.verify_max_model_len(max_model_len)
@property
@deprecated(
"`SchedulerConfig.chunked_prefill_enabled` has been renamed to "
"`SchedulerConfig.enable_chunked_prefill`. "
"The old name will be removed in v0.12."
)
def chunked_prefill_enabled(self) -> bool:
return self.enable_chunked_prefill
@chunked_prefill_enabled.setter
def chunked_prefill_enabled(self, value: bool):
self.enable_chunked_prefill = value
def verify_max_model_len(self, max_model_len: int) -> Self:
if (
self.max_num_batched_tokens < max_model_len

View File

@ -41,7 +41,6 @@ import torch.distributed
import torch.distributed._functional_collectives as funcol
import torch.distributed._symmetric_memory
from torch.distributed import Backend, ProcessGroup
from typing_extensions import deprecated
import vllm.envs as envs
from vllm.distributed.device_communicators.base_device_communicator import (
@ -1078,15 +1077,6 @@ def get_tp_group() -> GroupCoordinator:
return _TP
@deprecated(
"`get_tensor_model_parallel_group` has been replaced with "
"`get_tp_group` and may be removed after v0.12. Please use "
"`get_tp_group` instead."
)
def get_tensor_model_parallel_group():
return get_tp_group()
_DCP: GroupCoordinator | None = None
@ -1130,15 +1120,6 @@ def get_pcp_group() -> GroupCoordinator:
return _PCP
@deprecated(
"`get_pipeline_model_parallel_group` has been replaced with "
"`get_pp_group` and may be removed in v0.12. Please use "
"`get_pp_group` instead."
)
def get_pipeline_model_parallel_group():
return get_pp_group()
@contextmanager
def graph_capture(device: torch.device):
"""

View File

@ -10,7 +10,6 @@ import torch
import torch.nn as nn
from torch.func import functional_call
from transformers import PretrainedConfig
from typing_extensions import deprecated
from vllm.config import VllmConfig
from vllm.distributed import (
@ -481,54 +480,6 @@ def _merge_multimodal_embeddings(
return inputs_embeds
@deprecated(
"`merge_multimodal_embeddings` has been replaced with "
"`SupportsMultiModal.embed_input_ids` and will be "
"removed in v0.12."
)
def merge_multimodal_embeddings(
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
multimodal_embeddings: NestedTensors,
placeholder_token_id: int | list[int],
) -> torch.Tensor:
"""
Merge `multimodal_embeddings` into `inputs_embeds` by overwriting the
positions in `inputs_embeds` corresponding to placeholder tokens in
`input_ids`.
`placeholder_token_id` can be a list of token ids (e.g, token ids
of img_start, img_break, and img_end tokens) when needed: This means
the order of these tokens in the `input_ids` MUST MATCH the order of
their embeddings in `multimodal_embeddings` since we need to
slice-merge instead of individually scattering.
For example, if input_ids is "TTTTTSIIIBIIIBIIIETTT", where
- T is text token
- S is image start token
- I is image embedding token
- B is image break token
- E is image end token.
Then the image embeddings (that correspond to I's) from vision encoder
must be padded with embeddings of S, B, and E in the same order of
input_ids for a correct embedding merge.
Note:
This updates `inputs_embeds` in place.
"""
if isinstance(placeholder_token_id, list):
is_multimodal = isin_list(input_ids, placeholder_token_id)
else:
is_multimodal = input_ids == placeholder_token_id
return _merge_multimodal_embeddings(
inputs_embeds,
multimodal_embeddings=multimodal_embeddings,
is_multimodal=is_multimodal,
)
def isin_list(
elements: torch.Tensor,
test_elements_list: list[int],

View File

@ -126,12 +126,12 @@ class CachedRequestData:
return len(self.req_ids)
@cached_property
@deprecated("use resumed_req_ids field")
@deprecated("This will be removed in v0.14, use `resumed_req_ids` instead.")
def resumed_from_preemption(self) -> list[bool]:
return [req_id in self.resumed_req_ids for req_id in self.req_ids]
@cached_property
@deprecated("use all_token_ids field")
@deprecated("This will be removed in v0.14, use `all_token_ids` instead.")
def resumed_req_token_ids(self) -> list[list[int] | None]:
return [
self.all_token_ids[req_id] if req_id in self.resumed_req_ids else None