mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:35:24 +08:00
[Misc]: optimize eager mode host time (#4196)
Co-authored-by: xuhao <xuhao@cambricon.com>
This commit is contained in:
parent
e9d3aa04f6
commit
a377f0bd5e
@ -17,6 +17,7 @@ from typing import (Any, AsyncIterator, Awaitable, Callable, Dict, Generic,
|
||||
Hashable, List, Optional, OrderedDict, Tuple, TypeVar,
|
||||
Union)
|
||||
|
||||
import numpy as np
|
||||
import psutil
|
||||
import torch
|
||||
|
||||
@ -501,11 +502,6 @@ def str_to_int_tuple(s: str) -> Tuple[int, ...]:
|
||||
f"(e.g., 1, 2, 3). Given input: {s}") from e
|
||||
|
||||
|
||||
def pad_to_max_length(x: List[int], max_len: int, pad: int) -> List[int]:
|
||||
assert len(x) <= max_len
|
||||
return x + [pad] * (max_len - len(x))
|
||||
|
||||
|
||||
def make_tensor_with_pad(
|
||||
x: List[List[int]],
|
||||
max_len: int,
|
||||
@ -518,7 +514,10 @@ def make_tensor_with_pad(
|
||||
The padding is applied to the end of each inner list until it reaches
|
||||
`max_len`.
|
||||
"""
|
||||
padded_x = [pad_to_max_length(x_i, max_len, pad) for x_i in x]
|
||||
padded_x = np.zeros([len(x), max_len], dtype=np.int32) + pad
|
||||
for ind, blocktb in enumerate(x):
|
||||
assert len(blocktb) <= max_len
|
||||
padded_x[ind, :len(blocktb)] = blocktb
|
||||
return torch.tensor(padded_x, dtype=dtype, device=device)
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user