[misc] use out argument for flash attention (#10822)

Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
youkaichao 2024-12-02 02:50:10 -08:00 committed by GitHub
parent e95f275f57
commit a4c4daf364
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 141 additions and 154 deletions

View File

@ -247,5 +247,6 @@ class AttentionImpl(ABC, Generic[T]):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
raise NotImplementedError

View File

@ -360,6 +360,7 @@ class BlocksparseFlashAttentionImpl(AttentionImpl):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
@ -448,5 +449,6 @@ class BlocksparseFlashAttentionImpl(AttentionImpl):
blocksparse_head_sliding_step=self.head_sliding_step,
)
assert output is not None
# Reshape the output tensor.
return output.view(num_tokens, hidden_size)

View File

@ -638,24 +638,27 @@ class FlashAttentionImpl(AttentionImpl):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
output: shape = [num_tokens, num_heads, head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
NOTE: kv_cache will be an empty tensor with shape [0]
for profiling run.
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
NOTE: It in-place updates the output tensor.
"""
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
assert k_scale == 1.0 and v_scale == 1.0, (
"key/v_scale is not supported in FlashAttention.")
assert output is not None, "Output tensor must be provided."
if (attn_type == AttentionType.ENCODER
and (not attn_metadata.is_all_encoder_attn_metadata_set)):
raise AttributeError("Encoder attention requires setting "
@ -666,23 +669,12 @@ class FlashAttentionImpl(AttentionImpl):
"requires setting cross-attention "
"metadata attributes.")
num_heads: int = self.num_heads
head_size: int = self.head_size
num_kv_heads: int = self.num_kv_heads
kv_cache_dtype: str = self.kv_cache_dtype
softmax_scale: float = self.scale
window_size = self.sliding_window
alibi_slopes: Optional[torch.Tensor] = self.alibi_slopes
logits_soft_cap: Optional[float] = self.logits_soft_cap
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, num_heads, head_size)
if (key is not None) and (value is not None):
key = key.view(-1, num_kv_heads, head_size)
value = value.view(-1, num_kv_heads, head_size)
if kv_cache.numel() > 0:
key_cache = kv_cache[0]
value_cache = kv_cache[1]
@ -721,13 +713,13 @@ class FlashAttentionImpl(AttentionImpl):
num_decode_query_tokens) = \
get_num_prefill_decode_query_kv_tokens(attn_metadata, attn_type)
decode_query = query[num_prefill_query_tokens:]
decode_output = output[num_prefill_query_tokens:]
# QKV for prefill.
query = query[:num_prefill_query_tokens]
prefill_output = output[:num_prefill_query_tokens]
assert query.shape[0] == num_prefill_query_tokens
assert decode_query.shape[0] == num_decode_query_tokens
prefill_output: Optional[torch.Tensor] = None
decode_output: Optional[torch.Tensor] = None
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
if (kv_cache.numel() == 0 or prefill_meta.block_tables is None
@ -741,7 +733,7 @@ class FlashAttentionImpl(AttentionImpl):
key = key[:num_prefill_kv_tokens]
value = value[:num_prefill_kv_tokens]
prefill_output = flash_attn_varlen_func(
flash_attn_varlen_func(
q=query,
k=key,
v=value,
@ -754,6 +746,7 @@ class FlashAttentionImpl(AttentionImpl):
window_size=window_size,
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
out=prefill_output,
)
else:
# prefix-enabled attention
@ -761,7 +754,7 @@ class FlashAttentionImpl(AttentionImpl):
"Only decoder-only models support prefix caching")
assert prefill_meta.seq_lens is not None
max_seq_len = max(prefill_meta.seq_lens)
prefill_output = flash_attn_varlen_func( # noqa
flash_attn_varlen_func( # noqa
q=query,
k=key_cache,
v=value_cache,
@ -775,6 +768,7 @@ class FlashAttentionImpl(AttentionImpl):
alibi_slopes=alibi_slopes,
block_table=prefill_meta.block_tables,
softcap=logits_soft_cap,
out=prefill_output,
)
if decode_meta := attn_metadata.decode_metadata:
@ -788,7 +782,7 @@ class FlashAttentionImpl(AttentionImpl):
assert attn_type == AttentionType.DECODER, (
"Only decoder-only models support max_decode_query_len > 1"
)
decode_output = flash_attn_varlen_func(
flash_attn_varlen_func(
q=decode_query,
k=key_cache,
v=value_cache,
@ -802,6 +796,7 @@ class FlashAttentionImpl(AttentionImpl):
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
block_table=decode_meta.block_tables,
out=decode_output,
)
else:
# Use flash_attn_with_kvcache for normal decoding.
@ -810,7 +805,7 @@ class FlashAttentionImpl(AttentionImpl):
_,
block_tables_arg,
) = get_seq_len_block_table_args(decode_meta, False, attn_type)
decode_output = flash_attn_with_kvcache(
flash_attn_with_kvcache(
q=decode_query.unsqueeze(1),
k_cache=key_cache,
v_cache=value_cache,
@ -821,20 +816,8 @@ class FlashAttentionImpl(AttentionImpl):
window_size=window_size,
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
).squeeze(1)
if prefill_output is None:
assert decode_output is not None
return decode_output.view(num_decode_query_tokens, hidden_size)
if decode_output is None:
assert prefill_output is not None
return prefill_output.view(num_prefill_query_tokens, hidden_size)
assert decode_meta is not None
decode_output = decode_output.squeeze(1)
output = torch.cat([prefill_output, decode_output], dim=0)
return output.view(num_tokens, hidden_size)
out=decode_output.unsqueeze(1),
)
return output

View File

@ -774,7 +774,11 @@ class FlashInferImpl(AttentionImpl):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# TODO: directly write to output tensor
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "

View File

@ -145,6 +145,7 @@ class HPUAttentionImpl(AttentionImpl, torch.nn.Module):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with xFormers and PagedAttention.

View File

@ -173,6 +173,7 @@ class IpexAttnBackendImpl(AttentionImpl[IpexAttnMetadata]):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with IPEX varlen_attention and PagedAttention.

View File

@ -151,6 +151,7 @@ class PallasAttentionBackendImpl(AttentionImpl):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with Pallas attention.

View File

@ -415,6 +415,7 @@ class ROCmFlashAttentionImpl(AttentionImpl):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.

View File

@ -431,6 +431,7 @@ class TorchSDPABackendImpl(AttentionImpl[TorchSDPAMetadata]):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with torch SDPA and PagedAttention.

View File

@ -417,6 +417,7 @@ class XFormersImpl(AttentionImpl[XFormersMetadata]):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with xFormers and PagedAttention.

View File

@ -4,7 +4,6 @@ from typing import Any, Dict, List, Optional
import torch
import torch.nn as nn
import vllm.envs as envs
from vllm.attention import AttentionMetadata, AttentionType
from vllm.attention.selector import backend_name_to_enum, get_attn_backend
from vllm.config import CacheConfig, get_current_vllm_config
@ -12,7 +11,7 @@ from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.platforms import current_platform
from vllm.platforms import _Backend, current_platform
from vllm.utils import direct_register_custom_op
@ -97,14 +96,23 @@ class Attention(nn.Module):
self.impl = impl_cls(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap)
self.num_heads = num_heads
self.head_size = head_size
self.num_kv_heads = num_kv_heads
self.backend = backend_name_to_enum(attn_backend.get_name())
# For cuda-alike (CUDA and ROCM) and cpu platforms, we control how
# torch.compile works by registering the attention as one giant
# opaque custom op. For other platforms, we directly call them
# and let torch.compile handle them.
self.use_direct_call = envs.VLLM_USE_V1 or not (
current_platform.is_cuda_alike() or current_platform.is_cpu())
self.use_direct_call = not current_platform.is_cuda_alike(
) and not current_platform.is_cpu()
# For some attention backends, we allocate an output tensor before
# calling the custom op. When piecewise cudagraph is enabled, this
# makes sure the output tensor is allocated inside the cudagraph.
self.use_output = self.backend == _Backend.FLASH_ATTN or \
self.backend == _Backend.FLASH_ATTN_VLLM_V1
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
@ -130,6 +138,22 @@ class Attention(nn.Module):
self._k_scale,
self._v_scale,
attn_type=attn_type)
elif self.use_output:
output = torch.empty_like(query)
hidden_size = query.size(-1)
# Reshape the query, key, and value tensors.
# NOTE(woosuk): We do this outside the custom op to minimize the
# CPU overheads from the non-CUDA-graph regions.
query = query.view(-1, self.num_heads, self.head_size)
output = output.view(-1, self.num_heads, self.head_size)
if key is not None:
key = key.view(-1, self.num_kv_heads, self.head_size)
if value is not None:
value = value.view(-1, self.num_kv_heads, self.head_size)
torch.ops.vllm.unified_attention_with_output(
query, key, value, output, kv_cache, attn_type,
self.layer_name)
return output.view(-1, hidden_size)
else:
return torch.ops.vllm.unified_attention(query, key, value,
kv_cache, attn_type,
@ -183,3 +207,47 @@ direct_register_custom_op(
fake_impl=unified_attention_fake,
dispatch_key=current_platform.dispatch_key,
)
def unified_attention_with_output(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
output: torch.Tensor,
kv_cache: torch.Tensor,
attn_type: str,
layer_name: str,
) -> None:
forward_context: ForwardContext = get_forward_context()
attn_metadata = forward_context.dynamic_forward_context
self = forward_context.static_forward_context[layer_name]
self.impl.forward(query,
key,
value,
kv_cache,
attn_metadata,
self._k_scale,
self._v_scale,
attn_type=attn_type,
output=output)
def unified_attention_with_output_fake(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
output: torch.Tensor,
kv_cache: torch.Tensor,
attn_type: str,
layer_name: str,
) -> None:
return
direct_register_custom_op(
op_name="unified_attention_with_output",
op_func=unified_attention_with_output,
mutates_args=["kv_cache", "output"],
fake_impl=unified_attention_with_output_fake,
dispatch_key=current_platform.dispatch_key,
)

View File

@ -2238,7 +2238,7 @@ class CompilationConfig(BaseModel):
custom_ops: List[str] = Field(default_factory=list)
splitting_ops: List[str] = Field(default_factory=lambda: [
"vllm.unified_attention",
"vllm.unified_v1_flash_attention",
"vllm.unified_attention_with_output",
])
use_inductor: bool = True

View File

@ -6,8 +6,6 @@ import torch
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata, AttentionType)
from vllm.forward_context import get_forward_context
from vllm.utils import direct_register_custom_op
from vllm.vllm_flash_attn import flash_attn_varlen_func
@ -113,13 +111,14 @@ class FlashAttentionImpl(AttentionImpl):
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: AttentionType = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
@ -135,118 +134,42 @@ class FlashAttentionImpl(AttentionImpl):
assert k_scale == 1.0 and v_scale == 1.0, (
"key/v_scale is not supported in FlashAttention.")
# Reshape the query, key, and value tensors.
# NOTE(woosuk): We do this outside the custom op to minimize the CPU
# overheads from the non-CUDA-graph regions.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if attn_metadata is None:
# Profiling run.
return output
output = torch.empty_like(query)
torch.ops.vllm.unified_v1_flash_attention(
output,
query,
key,
value,
self.num_heads,
self.head_size,
self.num_kv_heads,
kv_cache,
num_actual_tokens = attn_metadata.num_actual_tokens
# Reshape the input keys and values and store them in the cache.
key_cache = kv_cache[0]
value_cache = kv_cache[1]
torch.ops._C_cache_ops.reshape_and_cache_flash(
key[:num_actual_tokens],
value[:num_actual_tokens],
key_cache,
value_cache,
attn_metadata.slot_mapping,
self.kv_cache_dtype,
k_scale,
v_scale,
self.scale,
self.sliding_window,
self.alibi_slopes,
self.logits_soft_cap,
)
return output.view(-1, self.num_heads * self.head_size)
# Compute attention and update output up to `num_actual_tokens`.
flash_attn_varlen_func(
q=query[:num_actual_tokens],
k=key_cache,
v=value_cache,
out=output[:num_actual_tokens],
cu_seqlens_q=attn_metadata.query_start_loc,
max_seqlen_q=attn_metadata.max_query_len,
cu_seqlens_k=attn_metadata.seq_start_loc,
max_seqlen_k=attn_metadata.max_seq_len,
softmax_scale=self.scale,
causal=True,
alibi_slopes=self.alibi_slopes,
window_size=self.sliding_window,
block_table=attn_metadata.block_table,
softcap=self.logits_soft_cap,
)
def unified_v1_flash_attention(
output: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
num_heads: int,
head_size: int,
num_kv_heads: int,
kv_cache: torch.Tensor,
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
softmax_scale: float,
window_size: Optional[List[int]] = None,
alibi_slopes: Optional[torch.Tensor] = None,
logits_soft_cap: Optional[float] = None,
) -> None:
context = get_forward_context()
current_metadata = context.dynamic_forward_context
if current_metadata is None:
# Profiling run.
return
assert current_metadata is not None
assert isinstance(current_metadata, FlashAttentionMetadata)
attn_metadata: FlashAttentionMetadata = current_metadata
num_actual_tokens = attn_metadata.num_actual_tokens
# Reshape the input keys and values and store them in the cache.
key_cache = kv_cache[0]
value_cache = kv_cache[1]
torch.ops._C_cache_ops.reshape_and_cache_flash(
key[:num_actual_tokens],
value[:num_actual_tokens],
key_cache,
value_cache,
attn_metadata.slot_mapping,
kv_cache_dtype,
k_scale,
v_scale,
)
# Compute attention and update output up to `num_actual_tokens`.
flash_attn_varlen_func(
q=query[:num_actual_tokens],
k=key_cache,
v=value_cache,
out=output[:num_actual_tokens],
cu_seqlens_q=attn_metadata.query_start_loc,
max_seqlen_q=attn_metadata.max_query_len,
cu_seqlens_k=attn_metadata.seq_start_loc,
max_seqlen_k=attn_metadata.max_seq_len,
softmax_scale=softmax_scale,
causal=True,
alibi_slopes=alibi_slopes,
window_size=window_size,
block_table=attn_metadata.block_table,
softcap=logits_soft_cap,
)
def unified_v1_flash_attention_fake(
output: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
num_heads: int,
head_size: int,
num_kv_heads: int,
kv_cache: torch.Tensor,
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
softmax_scale: float,
window_size: Optional[List[int]] = None,
alibi_slopes: Optional[torch.Tensor] = None,
logits_soft_cap: Optional[float] = None,
) -> None:
return
direct_register_custom_op(
op_name="unified_v1_flash_attention",
op_func=unified_v1_flash_attention,
mutates_args=["kv_cache", "output"],
fake_impl=unified_v1_flash_attention_fake,
)
return output