add QWen-7b (#685)

Co-authored-by: wq.chu <wq.chu@tianrang-inc.com>
This commit is contained in:
Qing 2023-08-09 04:50:38 +08:00 committed by GitHub
parent 79af7e96a0
commit a57d13cc96
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 396 additions and 11 deletions

View File

@ -23,6 +23,7 @@ _MODEL_REGISTRY = {
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
"MPTForCausalLM": MPTForCausalLM,
"OPTForCausalLM": OPTForCausalLM,
"QWenLMHeadModel": QWenLMHeadModel,
"RWForCausalLM": FalconForCausalLM,
}

View File

@ -9,17 +9,11 @@ from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.model_executor.models.mpt import MPTForCausalLM
from vllm.model_executor.models.opt import OPTForCausalLM
from vllm.model_executor.models.qwen import QWenLMHeadModel
__all__ = [
"BaiChuanForCausalLM",
"BaichuanForCausalLM",
"BloomForCausalLM",
"FalconForCausalLM",
"GPT2LMHeadModel",
"GPTBigCodeForCausalLM",
"GPTJForCausalLM",
"GPTNeoXForCausalLM",
"LlamaForCausalLM",
"MPTForCausalLM",
"OPTForCausalLM",
"BaiChuanForCausalLM", "BaichuanForCausalLM", "BloomForCausalLM",
"FalconForCausalLM", "GPT2LMHeadModel", "GPTBigCodeForCausalLM",
"GPTJForCausalLM", "GPTNeoXForCausalLM", "LlamaForCausalLM",
"MPTForCausalLM", "OPTForCausalLM", "QWenLMHeadModel"
]

View File

@ -0,0 +1,316 @@
# coding=utf-8
# Adapted from
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
"""Inference-only QWen model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (
hf_model_weights_iterator,
load_tensor_parallel_weights,
)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.parallel_utils.tensor_parallel import (
VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear,
)
from vllm.sequence import SequenceOutputs
from vllm.transformers_utils.configs.qwen import QWenConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
class QWenMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str = "silu",
):
super().__init__()
self.gate_up_proj = ColumnParallelLinear(
hidden_size,
2 * intermediate_size,
bias=False,
gather_output=False,
perform_initialization=False,
)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
input_is_parallel=True,
perform_initialization=False,
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.c_proj(x)
return x
class QWenAttention(nn.Module):
def __init__(self, hidden_size: int, num_heads: int,
max_position_embeddings: int):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
)
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = hidden_size // self.total_num_heads
# pylint: disable=invalid-name
self.c_attn = ColumnParallelLinear(
hidden_size,
3 * hidden_size,
bias=True,
gather_output=False,
perform_initialization=False,
)
self.c_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
input_is_parallel=True,
perform_initialization=False,
)
self.scaling = self.head_dim**-0.5
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_dim,
self.scaling,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.c_proj(attn_output)
return output
class QWenBlock(nn.Module):
def __init__(self, config: QWenConfig):
super().__init__()
self.ln_1 = RMSNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = QWenAttention(config.n_embd, config.num_attention_heads,
config.max_position_embeddings)
self.ln_2 = RMSNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.mlp = QWenMLP(config.n_embd, config.ffn_hidden_size // 2)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
hidden_states = self.attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class QWenModel(nn.Module):
def __init__(self, config: QWenConfig):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.wte = VocabParallelEmbedding(vocab_size,
config.n_embd,
perform_initialization=False)
self.h = nn.ModuleList(
[QWenBlock(config) for _ in range(config.num_hidden_layers)])
self.ln_f = RMSNorm(config.n_embd, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class QWenLMHeadModel(nn.Module):
def __init__(self, config: QWenConfig):
super().__init__()
self.config = config
self.transformer = QWenModel(config)
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.lm_head = ColumnParallelLinear(
config.n_embd,
vocab_size,
bias=False,
gather_output=False,
perform_initialization=False,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> Dict[int, SequenceOutputs]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = ["wte.weight", "lm_head.weight"]
_row_parallel_weights = ["c_proj.weight"]
def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False,
):
tp_world_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, use_np_cache):
if "rotary_emb.inv_freq" in name:
continue
if "wte" in name or "lm_head" in name:
# Consider padding in the vocab size.
param = state_dict[name]
padded_vocab_size = param.shape[0] * tp_world_size
num_extra_rows = padded_vocab_size - self.config.vocab_size
extra_rows = torch.empty(num_extra_rows,
loaded_weight.shape[1])
extra_rows = extra_rows.to(loaded_weight)
loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
if "c_attn" in name:
total_num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
num_heads = total_num_heads // tp_world_size
head_start = tp_rank * num_heads
head_end = (tp_rank + 1) * num_heads
if "weight" in name:
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size, hidden_size)
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif "bias" in name:
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size)
loaded_weight = loaded_weight[:, head_start:head_end, :]
loaded_weight = loaded_weight.reshape(-1)
is_gate_up_weight = False
for stride_id, weight_name in enumerate(["w2", "w1"]):
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
(tp_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_gate_up_weight = True
break
if is_gate_up_weight:
continue
param = state_dict[name]
load_tensor_parallel_weights(
param,
loaded_weight,
name,
self._column_parallel_weights,
self._row_parallel_weights,
tp_rank,
)

View File

@ -5,6 +5,7 @@ from vllm.transformers_utils.configs import * # pylint: disable=wildcard-import
_CONFIG_REGISTRY = {
"mpt": MPTConfig,
"baichuan": BaiChuanConfig,
"qwen": QWenConfig,
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
}

View File

@ -1,5 +1,6 @@
from vllm.transformers_utils.configs.mpt import MPTConfig
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
from vllm.transformers_utils.configs.qwen import QWenConfig
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
# `FalconConfig` class from the official HuggingFace transformers library.
@ -8,5 +9,6 @@ from vllm.transformers_utils.configs.falcon import RWConfig
__all__ = [
"MPTConfig",
"BaiChuanConfig",
"QWenConfig",
"RWConfig",
]

View File

@ -0,0 +1,71 @@
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
from transformers import PretrainedConfig
class QWenConfig(PretrainedConfig):
model_type = "qwen"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"max_position_embeddings": "n_positions",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=151851,
n_embd=4096,
n_layer=32,
n_head=32,
n_inner=None,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
eos_token_id=151643,
apply_residual_connection_post_layernorm=False,
bf16=True,
kv_channels=128,
rotary_pct=1.0,
rotary_emb_base=10000,
use_dynamic_ntk=False,
use_logn_attn=False,
use_flash_attn=True,
ffn_hidden_size=22016,
no_bias=True,
tie_word_embeddings=False,
**kwargs,
):
self.eos_token_id = eos_token_id
super().__init__(eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs)
self.vocab_size = vocab_size
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.apply_residual_connection_post_layernorm = (
apply_residual_connection_post_layernorm)
self.bf16 = bf16
self.kv_channels = kv_channels
self.rotary_pct = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.use_dynamic_ntk = use_dynamic_ntk
self.use_logn_attn = use_logn_attn
self.use_flash_attn = use_flash_attn
self.ffn_hidden_size = ffn_hidden_size
self.no_bias = no_bias
self.tie_word_embeddings = tie_word_embeddings