mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-25 17:34:03 +08:00
[Quantization] add BNB for MixtralForCausalLM (#20893)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
parent
c488b928a7
commit
a99b9f7dee
@ -227,7 +227,12 @@ def get_model_architecture(
|
||||
# Special handling for quantized Mixtral.
|
||||
# FIXME(woosuk): This is a temporary hack.
|
||||
mixtral_supported = [
|
||||
"fp8", "compressed-tensors", "gptq_marlin", "awq_marlin", "quark"
|
||||
"fp8",
|
||||
"compressed-tensors",
|
||||
"gptq_marlin",
|
||||
"awq_marlin",
|
||||
"quark",
|
||||
"bitsandbytes",
|
||||
]
|
||||
|
||||
vllm_supported_archs = ModelRegistry.get_supported_archs()
|
||||
|
||||
@ -45,12 +45,14 @@ from vllm.model_executor.layers.quantization.base_config import (
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from . import mixtral
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .utils import AutoWeightsLoader, make_layers, maybe_prefix
|
||||
from .utils import (AutoWeightsLoader, is_pp_missing_parameter, make_layers,
|
||||
maybe_prefix)
|
||||
|
||||
|
||||
class GraniteMoeMoE(nn.Module):
|
||||
@ -307,6 +309,103 @@ class GraniteMoeModel(nn.Module):
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
def _load_weights(self,
|
||||
weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
||||
"""
|
||||
This function is copied from `MixtralModel.load_weights`, mainly to
|
||||
decouple from mixtral, avoiding impact on support like BNB
|
||||
quantization.
|
||||
"""
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="w1",
|
||||
ckpt_down_proj_name="w2",
|
||||
ckpt_up_proj_name="w3",
|
||||
num_experts=self.config.num_local_experts)
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
for name, loaded_weight in weights:
|
||||
if (self.quant_config is not None and
|
||||
(scale_name := self.quant_config.get_cache_scale(name))):
|
||||
# Loading kv cache quantization scales
|
||||
param = params_dict[scale_name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
|
||||
loaded_weight[0])
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(scale_name)
|
||||
continue
|
||||
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
if name.endswith("scale"):
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
new_weights = {}
|
||||
@ -339,7 +438,7 @@ class GraniteMoeModel(nn.Module):
|
||||
new_weights[gate_name] = p
|
||||
else:
|
||||
new_weights[n] = p
|
||||
return mixtral.MixtralModel.load_weights(self, new_weights.items())
|
||||
return self._load_weights(new_weights.items())
|
||||
|
||||
|
||||
class GraniteMoeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
|
||||
@ -27,8 +27,7 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from . import mixtral
|
||||
from .granitemoe import GraniteMoeAttention, GraniteMoeMoE
|
||||
from .granitemoe import GraniteMoeAttention, GraniteMoeModel, GraniteMoeMoE
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .utils import AutoWeightsLoader, make_layers, maybe_prefix
|
||||
|
||||
@ -242,7 +241,7 @@ class GraniteMoeSharedModel(nn.Module):
|
||||
new_weights[gate_name] = p
|
||||
else:
|
||||
new_weights[n] = p
|
||||
return mixtral.MixtralModel.load_weights(self, new_weights.items())
|
||||
return GraniteMoeModel._load_weights(self, new_weights.items())
|
||||
|
||||
|
||||
class GraniteMoeSharedForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
|
||||
@ -317,6 +317,15 @@ class MixtralModel(nn.Module):
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
return FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="w1",
|
||||
ckpt_down_proj_name="w2",
|
||||
ckpt_up_proj_name="w3",
|
||||
num_experts=self.config.num_local_experts)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
stacked_params_mapping = [
|
||||
@ -326,16 +335,9 @@ class MixtralModel(nn.Module):
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="w1",
|
||||
ckpt_down_proj_name="w2",
|
||||
ckpt_up_proj_name="w3",
|
||||
num_experts=self.config.num_local_experts)
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
expert_params_mapping = self.get_expert_mapping()
|
||||
for name, loaded_weight in weights:
|
||||
if (self.quant_config is not None and
|
||||
(scale_name := self.quant_config.get_cache_scale(name))):
|
||||
@ -486,3 +488,6 @@ class MixtralForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
torch.Tensor]]) -> set[str]:
|
||||
loader = AutoWeightsLoader(self)
|
||||
return loader.load_weights(weights)
|
||||
|
||||
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
||||
return self.model.get_expert_mapping()
|
||||
|
||||
@ -352,6 +352,7 @@ class OlmoeModel(nn.Module):
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
expert_params_mapping = self.get_expert_mapping()
|
||||
for name, loaded_weight in weights:
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
# Skip non-stacked layers and experts (experts handled below).
|
||||
@ -380,7 +381,7 @@ class OlmoeModel(nn.Module):
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in self.get_expert_mapping():
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
|
||||
@ -413,6 +413,7 @@ class Qwen2MoeModel(nn.Module):
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
expert_params_mapping = self.get_expert_mapping()
|
||||
for name, loaded_weight in weights:
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
# Skip non-stacked layers and experts (experts handled below).
|
||||
@ -442,7 +443,7 @@ class Qwen2MoeModel(nn.Module):
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in self.get_expert_mapping():
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
|
||||
@ -400,11 +400,9 @@ class Qwen3MoeModel(nn.Module):
|
||||
".v_scale", "_v_scale", ".weight_scale",
|
||||
"_weight_scale", ".input_scale", "_input_scale")
|
||||
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = self.get_expert_mapping()
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
expert_params_mapping = self.get_expert_mapping()
|
||||
for name, loaded_weight in weights:
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
# Skip non-stacked layers and experts (experts handled below).
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user