mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 10:35:01 +08:00
[core][rlhf] add colocate example for RLHF (#12984)
Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
parent
59fff4a01a
commit
aa0ca5ebb7
@ -128,7 +128,7 @@ steps:
|
|||||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||||
- tests/compile
|
- tests/compile
|
||||||
- examples/offline_inference/rlhf.py
|
- examples/offline_inference/rlhf.py
|
||||||
- examples/offline_inference/ray_placement.py
|
- examples/offline_inference/rlhf_colocate.py
|
||||||
commands:
|
commands:
|
||||||
- pytest -v -s distributed/test_utils.py
|
- pytest -v -s distributed/test_utils.py
|
||||||
- pytest -v -s compile/test_basic_correctness.py
|
- pytest -v -s compile/test_basic_correctness.py
|
||||||
@ -137,7 +137,7 @@ steps:
|
|||||||
# TODO: create a dedicated test section for multi-GPU example tests
|
# TODO: create a dedicated test section for multi-GPU example tests
|
||||||
# when we have multiple distributed example tests
|
# when we have multiple distributed example tests
|
||||||
- python3 ../examples/offline_inference/rlhf.py
|
- python3 ../examples/offline_inference/rlhf.py
|
||||||
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/ray_placement.py
|
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/rlhf_colocate.py
|
||||||
|
|
||||||
- label: Metrics, Tracing Test # 10min
|
- label: Metrics, Tracing Test # 10min
|
||||||
num_gpus: 2
|
num_gpus: 2
|
||||||
|
|||||||
@ -1,13 +1,18 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
"""
|
"""
|
||||||
a simple demonstration to show how to control
|
a simple demonstration to show how to co-locate
|
||||||
the placement of the vLLM workers with Ray.
|
vLLM worker with training actors on the same GPUs,
|
||||||
The key is to set VLLM_RAY_PER_WORKER_GPUS and
|
for RLHF-like applications.
|
||||||
VLLM_RAY_BUNDLE_INDICES properly.
|
The key points:
|
||||||
|
- Control the placement of the vLLM workers with Ray, by setting
|
||||||
|
VLLM_RAY_PER_WORKER_GPUS and VLLM_RAY_BUNDLE_INDICES properly.
|
||||||
|
- Use cuda-ipc to pass tensors, since NCCL does not work when we have
|
||||||
|
multiple processes on the same GPU.
|
||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import ray
|
import ray
|
||||||
|
import torch
|
||||||
from ray.util.placement_group import placement_group
|
from ray.util.placement_group import placement_group
|
||||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
||||||
|
|
||||||
@ -19,7 +24,33 @@ class MyWorker(Worker):
|
|||||||
|
|
||||||
def report_device_id(self) -> str:
|
def report_device_id(self) -> str:
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
return current_platform.get_device_uuid(self.device.index)
|
self.device_uuid = current_platform.get_device_uuid(self.device.index)
|
||||||
|
return self.device_uuid
|
||||||
|
|
||||||
|
def update_weights_from_ipc_handles(self, ipc_handles):
|
||||||
|
handles = ipc_handles[self.device_uuid]
|
||||||
|
device_id = self.device.index
|
||||||
|
weights = []
|
||||||
|
for name, handle in handles.items():
|
||||||
|
func, args = handle
|
||||||
|
list_args = list(args)
|
||||||
|
# the key is to change device id to the current device id
|
||||||
|
# in case two processes have different CUDA_VISIBLE_DEVICES
|
||||||
|
list_args[6] = device_id
|
||||||
|
tensor = func(*list_args)
|
||||||
|
weights.append((name, tensor))
|
||||||
|
self.model_runner.model.load_weights(weights=weights)
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
|
||||||
|
def check_weights_changed(self):
|
||||||
|
"""
|
||||||
|
Check if the weights are updated to 0.
|
||||||
|
"""
|
||||||
|
weights_updated = True
|
||||||
|
for name, p in self.model_runner.model.named_parameters():
|
||||||
|
weights_updated = weights_updated and torch.allclose(
|
||||||
|
p, torch.zeros_like(p))
|
||||||
|
return weights_updated
|
||||||
|
|
||||||
|
|
||||||
class MyLLM(LLM):
|
class MyLLM(LLM):
|
||||||
@ -40,12 +71,32 @@ class MyLLM(LLM):
|
|||||||
|
|
||||||
class RayTrainingActor:
|
class RayTrainingActor:
|
||||||
|
|
||||||
def report_device_id(self) -> str:
|
def __init__(self):
|
||||||
|
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
|
||||||
|
from transformers import AutoModelForCausalLM
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
|
||||||
|
self.model.to("cuda:0")
|
||||||
|
for name, p in self.model.named_parameters():
|
||||||
|
p.data.zero_()
|
||||||
|
torch.cuda.synchronize()
|
||||||
# the argument for get_device_uuid is the index
|
# the argument for get_device_uuid is the index
|
||||||
# of the GPU in the visible devices.
|
# of the GPU in the visible devices.
|
||||||
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
|
|
||||||
from vllm.platforms import current_platform
|
from vllm.platforms import current_platform
|
||||||
return current_platform.get_device_uuid(0)
|
self.device_uuid = current_platform.get_device_uuid(0)
|
||||||
|
|
||||||
|
def report_device_id(self) -> str:
|
||||||
|
return self.device_uuid
|
||||||
|
|
||||||
|
def get_weight_ipc_handles(self):
|
||||||
|
from torch.multiprocessing.reductions import reduce_tensor
|
||||||
|
data = {}
|
||||||
|
for name, p in self.model.named_parameters():
|
||||||
|
# the training actor might only have a subset of the weights
|
||||||
|
# and need to all-gather the weights from all the actors.
|
||||||
|
# for demonstration, here we assume all training actors have
|
||||||
|
# the full weights.
|
||||||
|
data[name] = reduce_tensor(p.detach())
|
||||||
|
return {self.device_uuid: data}
|
||||||
|
|
||||||
|
|
||||||
# ray manages 4 GPUs
|
# ray manages 4 GPUs
|
||||||
@ -78,6 +129,8 @@ for bundle_index in [0, 1, 2, 3]:
|
|||||||
),
|
),
|
||||||
)(RayTrainingActor).remote()
|
)(RayTrainingActor).remote()
|
||||||
training_actors.append(training_actor)
|
training_actors.append(training_actor)
|
||||||
|
|
||||||
|
for bundle_index, training_actor in enumerate(training_actors):
|
||||||
device_id = ray.get(training_actor.report_device_id.remote())
|
device_id = ray.get(training_actor.report_device_id.remote())
|
||||||
print(f"training actor {bundle_index} is on {device_id}")
|
print(f"training actor {bundle_index} is on {device_id}")
|
||||||
training_actor_device_ids.append(device_id)
|
training_actor_device_ids.append(device_id)
|
||||||
@ -119,3 +172,18 @@ assert training_actor_device_ids[:2] == inference_engine_device_ids[0]
|
|||||||
# the last two training actors should be
|
# the last two training actors should be
|
||||||
# on the same GPUs as the second inference engine
|
# on the same GPUs as the second inference engine
|
||||||
assert training_actor_device_ids[2:] == inference_engine_device_ids[1]
|
assert training_actor_device_ids[2:] == inference_engine_device_ids[1]
|
||||||
|
|
||||||
|
print("gather all the IPC handles from the training actors")
|
||||||
|
ipc_handles = {}
|
||||||
|
for actor in training_actors:
|
||||||
|
ipc_handles.update(ray.get(actor.get_weight_ipc_handles.remote()))
|
||||||
|
|
||||||
|
print("update the weights of the inference engines")
|
||||||
|
for llm in inference_engines:
|
||||||
|
ray.get(
|
||||||
|
llm.collective_rpc.remote("update_weights_from_ipc_handles",
|
||||||
|
args=(ipc_handles, )))
|
||||||
|
print("check if the weights are updated")
|
||||||
|
for llm in inference_engines:
|
||||||
|
assert ray.get(
|
||||||
|
llm.collective_rpc.remote("check_weights_changed", args=tuple()))
|
||||||
Loading…
x
Reference in New Issue
Block a user