Upstreaming aiter triton attention backend as a new backend (#28701)

Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
This commit is contained in:
Aleksandr Malyshev 2025-11-19 11:59:30 -08:00 committed by GitHub
parent 9d2d561257
commit ac10fd3c69
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 80 additions and 1 deletions

View File

@ -46,6 +46,9 @@ class AttentionBackendEnum(Enum, metaclass=_AttentionBackendEnumMeta):
XFORMERS = "vllm.v1.attention.backends.xformers.XFormersAttentionBackend"
ROCM_ATTN = "vllm.v1.attention.backends.rocm_attn.RocmAttentionBackend"
ROCM_AITER_MLA = "vllm.v1.attention.backends.mla.rocm_aiter_mla.AiterMLABackend"
ROCM_AITER_TRITON_MLA = (
"vllm.v1.attention.backends.mla.aiter_triton_mla.AiterTritonMLABackend"
)
ROCM_AITER_FA = (
"vllm.v1.attention.backends.rocm_aiter_fa.AiterFlashAttentionBackend"
)

View File

@ -234,7 +234,6 @@ class RocmPlatform(Platform):
if rocm_aiter_ops.is_mla_enabled() or block_size == 1
else AttentionBackendEnum.TRITON_MLA
)
if selected_backend == AttentionBackendEnum.TRITON_MLA:
if block_size != 1:
logger.info_once("Using Triton MLA backend.")
@ -246,6 +245,9 @@ class RocmPlatform(Platform):
if selected_backend == AttentionBackendEnum.ROCM_AITER_MLA:
logger.info("Using AITER MLA backend.")
return AttentionBackendEnum.ROCM_AITER_MLA.get_path()
if selected_backend == AttentionBackendEnum.ROCM_AITER_TRITON_MLA:
logger.info("Using AITER TRITON MLA backend.")
return AttentionBackendEnum.ROCM_AITER_TRITON_MLA.get_path()
raise ValueError(
f" The selected backend, {selected_backend.name},"

View File

@ -0,0 +1,74 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.v1.attention.backends.mla.common import MLACommonBackend
from vllm.v1.attention.backends.mla.rocm_aiter_mla import (
AiterMLAImpl,
AiterMLAMetadataBuilder,
)
class AiterTritonMLABackend(MLACommonBackend):
@staticmethod
def get_name() -> str:
return "AITER_TRITON_MLA"
@staticmethod
def get_impl_cls() -> type["AiterTritonMLAImpl"]:
return AiterTritonMLAImpl
@staticmethod
def get_builder_cls() -> type["AiterMLAMetadataBuilder"]:
return AiterMLAMetadataBuilder
class AiterTritonMLAImpl(AiterMLAImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: list[float] | None,
sliding_window: int | None,
kv_cache_dtype: str,
logits_soft_cap: float | None,
attn_type: str,
kv_sharing_target_layer_name: str | None,
# MLA Specific Arguments
**mla_args,
) -> None:
super().__init__(
num_heads,
head_size,
scale,
num_kv_heads,
alibi_slopes,
sliding_window,
kv_cache_dtype,
logits_soft_cap,
attn_type,
kv_sharing_target_layer_name,
**mla_args,
)
from aiter.ops.triton.mha import flash_attn_varlen_func
self.flash_attn_varlen_func = flash_attn_varlen_func
def _flash_attn_varlen_diff_headdims(
self, q, k, v, return_softmax_lse=False, softmax_scale=None, **kwargs
):
result = self.flash_attn_varlen_func(
q,
k,
v,
softmax_scale=softmax_scale,
return_lse=return_softmax_lse,
**kwargs,
)
# Transpose the LSE if Triton MHA is used:
# (q.shape[0], num_q_heads) to (num_q_heads, q.shape[0])
if type(result) is tuple and return_softmax_lse:
output, lse = result
lse = lse.T.contiguous()
return (output, lse)
return result