[Misc] Remove OLMo2 config copy (#17066)

Signed-off-by: Isotr0py <2037008807@qq.com>
This commit is contained in:
Isotr0py 2025-04-24 21:14:32 +08:00 committed by GitHub
parent c0dfd97519
commit b0c1f6202d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 4 additions and 176 deletions

View File

@ -28,6 +28,7 @@ from typing import Iterable, Optional, Tuple, Union
import torch import torch
from torch import nn from torch import nn
from transformers import Olmo2Config
from vllm.attention import Attention from vllm.attention import Attention
from vllm.config import VllmConfig from vllm.config import VllmConfig
@ -51,7 +52,6 @@ from vllm.model_executor.models.utils import (
make_layers, maybe_prefix) make_layers, maybe_prefix)
from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.olmo2 import Olmo2Config
class Olmo2Attention(nn.Module): class Olmo2Attention(nn.Module):

View File

@ -36,10 +36,9 @@ from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
KimiVLConfig, MedusaConfig, KimiVLConfig, MedusaConfig,
MllamaConfig, MLPSpeculatorConfig, MllamaConfig, MLPSpeculatorConfig,
MPTConfig, NemotronConfig, MPTConfig, NemotronConfig,
NVLM_D_Config, Olmo2Config, NVLM_D_Config, RWConfig,
RWConfig, SkyworkR1VChatConfig, SkyworkR1VChatConfig, SolarConfig,
SolarConfig, Telechat2Config, Telechat2Config, UltravoxConfig)
UltravoxConfig)
# yapf: enable # yapf: enable
from vllm.transformers_utils.utils import check_gguf_file from vllm.transformers_utils.utils import check_gguf_file
from vllm.utils import resolve_obj_by_qualname from vllm.utils import resolve_obj_by_qualname
@ -76,7 +75,6 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
"internvl_chat": InternVLChatConfig, "internvl_chat": InternVLChatConfig,
"nemotron": NemotronConfig, "nemotron": NemotronConfig,
"NVLM_D": NVLM_D_Config, "NVLM_D": NVLM_D_Config,
"olmo2": Olmo2Config,
"solar": SolarConfig, "solar": SolarConfig,
"skywork_chat": SkyworkR1VChatConfig, "skywork_chat": SkyworkR1VChatConfig,
"telechat": Telechat2Config, "telechat": Telechat2Config,

View File

@ -21,7 +21,6 @@ from vllm.transformers_utils.configs.moonvit import MoonViTConfig
from vllm.transformers_utils.configs.mpt import MPTConfig from vllm.transformers_utils.configs.mpt import MPTConfig
from vllm.transformers_utils.configs.nemotron import NemotronConfig from vllm.transformers_utils.configs.nemotron import NemotronConfig
from vllm.transformers_utils.configs.nvlm_d import NVLM_D_Config from vllm.transformers_utils.configs.nvlm_d import NVLM_D_Config
from vllm.transformers_utils.configs.olmo2 import Olmo2Config
from vllm.transformers_utils.configs.skyworkr1v import SkyworkR1VChatConfig from vllm.transformers_utils.configs.skyworkr1v import SkyworkR1VChatConfig
from vllm.transformers_utils.configs.solar import SolarConfig from vllm.transformers_utils.configs.solar import SolarConfig
from vllm.transformers_utils.configs.telechat2 import Telechat2Config from vllm.transformers_utils.configs.telechat2 import Telechat2Config
@ -46,7 +45,6 @@ __all__ = [
"KimiVLConfig", "KimiVLConfig",
"NemotronConfig", "NemotronConfig",
"NVLM_D_Config", "NVLM_D_Config",
"Olmo2Config",
"SkyworkR1VChatConfig", "SkyworkR1VChatConfig",
"SolarConfig", "SolarConfig",
"Telechat2Config", "Telechat2Config",

View File

@ -1,168 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# yapf: disable
# ruff: noqa: E501
# coding=utf-8
# Copied from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/olmo2/configuration_olmo2.py
"""OLMo 2 configuration."""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Olmo2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Olmo2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
```python
>>> from transformers import Olmo2Model, Olmo2Config
>>> # Initializing a Olmo2 7B style configuration
>>> configuration = Olmo2Config()
>>> # Initializing a model from the Olmo2 7B style configuration
>>> model = Olmo2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "olmo2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rms_norm_eps=1e-5,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.rms_norm_eps = rms_norm_eps
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")