Add util function for checking nesting of rope parameters (#31146)

Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
This commit is contained in:
Harry Mellor 2025-12-23 11:41:49 +00:00 committed by GitHub
parent 769f27e701
commit b10d47e0e0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 23 additions and 8 deletions

View File

@ -11,7 +11,6 @@ import torch
from pydantic import ConfigDict, Field, field_validator, model_validator
from pydantic.dataclasses import dataclass
from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
from transformers.configuration_utils import ALLOWED_LAYER_TYPES
import vllm.envs as envs
from vllm.attention.backends.registry import AttentionBackendEnum
@ -29,6 +28,7 @@ from vllm.transformers_utils.config import (
get_pooling_config,
get_sentence_transformer_tokenizer_config,
is_encoder_decoder,
is_rope_parameters_nested,
try_get_dense_modules,
try_get_generation_config,
try_get_safetensors_metadata,
@ -2125,9 +2125,7 @@ def _get_and_verify_max_len(
# In Transformers v5 rope_parameters could be TypedDict or dict[str, TypedDict].
# To simplify the verification, we convert it to dict[str, TypedDict].
rope_parameters = getattr(hf_config, "rope_parameters", None)
if rope_parameters and not set(rope_parameters.keys()).issubset(
ALLOWED_LAYER_TYPES
):
if rope_parameters and not is_rope_parameters_nested(rope_parameters):
rope_parameters = {"": rope_parameters}
# NOTE(woosuk): Gemma3's max_model_len (128K) is already scaled by RoPE

View File

@ -22,7 +22,6 @@ from typing import TYPE_CHECKING, Literal
import torch
from torch import nn
from transformers.configuration_utils import ALLOWED_LAYER_TYPES
from vllm.config.utils import getattr_iter
from vllm.logger import init_logger
@ -32,6 +31,7 @@ from vllm.model_executor.layers.linear import (
ReplicatedLinear,
RowParallelLinear,
)
from vllm.transformers_utils.config import is_rope_parameters_nested
if TYPE_CHECKING:
from vllm.config import VllmConfig
@ -207,7 +207,7 @@ def can_enable_torch_compile(vllm_config: "VllmConfig") -> bool:
rope_parameters: dict | None = getattr(text_config, "rope_parameters", None) or {}
if rope_parameters:
# Nest rope_parameters if not nested already to simplify logic
if not set(rope_parameters.keys()).issubset(ALLOWED_LAYER_TYPES):
if not is_rope_parameters_nested(rope_parameters):
rope_parameters = {"": rope_parameters}
return all(rp["rope_type"] != "dynamic" for rp in rope_parameters.values())
return True

View File

@ -15,7 +15,6 @@ from huggingface_hub import (
)
from packaging.version import Version
from transformers import GenerationConfig, PretrainedConfig
from transformers.configuration_utils import ALLOWED_LAYER_TYPES
from transformers.models.auto.image_processing_auto import get_image_processor_config
from transformers.models.auto.modeling_auto import (
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
@ -44,6 +43,16 @@ from .repo_utils import (
with_retry,
)
try:
# Transformers v5
from transformers.configuration_utils import ALLOWED_ATTENTION_LAYER_TYPES
except ImportError:
# Transformers v4
from transformers.configuration_utils import (
ALLOWED_LAYER_TYPES as ALLOWED_ATTENTION_LAYER_TYPES,
)
if envs.VLLM_USE_MODELSCOPE:
from modelscope import AutoConfig
else:
@ -104,6 +113,14 @@ _AUTO_CONFIG_KWARGS_OVERRIDES: dict[str, dict[str, Any]] = {
}
def is_rope_parameters_nested(rope_parameters: dict[str, Any]) -> bool:
"""Check if rope_parameters is nested by layer types."""
# Cannot be nested if rope_parameters is empty
if not rope_parameters:
return False
return set(rope_parameters.keys()).issubset(ALLOWED_ATTENTION_LAYER_TYPES)
class HFConfigParser(ConfigParserBase):
def parse(
self,
@ -346,7 +363,7 @@ def patch_rope_parameters(config: PretrainedConfig) -> None:
config.rope_parameters["original_max_position_embeddings"] = ompe
# Handle nested rope_parameters in interleaved sliding attention models
if set(config.rope_parameters.keys()).issubset(ALLOWED_LAYER_TYPES):
if is_rope_parameters_nested(config.rope_parameters):
for rope_parameters_layer_type in config.rope_parameters.values():
patch_rope_parameters_dict(rope_parameters_layer_type)
else: