[Model] MLPSpeculator speculative decoding support (#4947)

Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>

Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: Davis Wertheimer <Davis.Wertheimer@ibm.com>
This commit is contained in:
Joshua Rosenkranz 2024-06-20 20:23:12 -04:00 committed by GitHub
parent 6c5b7af152
commit b12518d3cf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 523 additions and 40 deletions

View File

@ -0,0 +1,59 @@
import gc
import time
from typing import List
from vllm import LLM, SamplingParams
def time_generation(llm: LLM, prompts: List[str],
sampling_params: SamplingParams):
# Generate texts from the prompts. The output is a list of RequestOutput
# objects that contain the prompt, generated text, and other information.
# Warmup first
llm.generate(prompts, sampling_params)
llm.generate(prompts, sampling_params)
start = time.time()
outputs = llm.generate(prompts, sampling_params)
end = time.time()
print((end - start) / sum([len(o.outputs[0].token_ids) for o in outputs]))
# Print the outputs.
for output in outputs:
generated_text = output.outputs[0].text
print(f"text: {generated_text!r}")
if __name__ == "__main__":
template = (
"Below is an instruction that describes a task. Write a response "
"that appropriately completes the request.\n\n### Instruction:\n{}"
"\n\n### Response:\n")
# Sample prompts.
prompts = [
"Write about the president of the United States.",
]
prompts = [template.format(prompt) for prompt in prompts]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.0, max_tokens=200)
# Create an LLM without spec decoding
llm = LLM(model="meta-llama/Llama-2-13b-chat-hf")
print("Without speculation")
time_generation(llm, prompts, sampling_params)
del llm
gc.collect()
# Create an LLM with spec decoding
llm = LLM(
model="meta-llama/Llama-2-13b-chat-hf",
speculative_model="ibm-fms/llama-13b-accelerator",
# These are currently required for MLPSpeculator decoding
use_v2_block_manager=True,
enforce_eager=True,
)
print("With speculation")
time_generation(llm, prompts, sampling_params)

View File

@ -456,7 +456,9 @@ def test_k_equals_zero(k: int, batch_size: int):
rejection_sampler.token_id_dtype = torch.int64
metrics_collector = MagicMock(spec=AsyncMetricsCollector)
target_worker.execute_model.return_value = [MagicMock(spec=SamplerOutput)]
sampler_output = MagicMock(spec=SamplerOutput)
sampler_output.hidden_states = None
target_worker.execute_model.return_value = [sampler_output]
draft_worker.device = 'cuda'
target_worker.device = 'cuda'
@ -497,7 +499,9 @@ def test_empty_input_batch(k: int, batch_size: int):
rejection_sampler.token_id_dtype = torch.int64
metrics_collector = MagicMock(spec=AsyncMetricsCollector)
target_worker.execute_model.return_value = [MagicMock(spec=SamplerOutput)]
sampler_output = MagicMock(spec=SamplerOutput)
sampler_output.hidden_states = None
target_worker.execute_model.return_value = [sampler_output]
draft_worker.device = 'cuda'
target_worker.device = 'cuda'

View File

@ -2,8 +2,8 @@ from unittest.mock import MagicMock
import pytest
from vllm.sequence import SequenceGroupMetadata
from vllm.spec_decode.util import get_all_seq_ids, split_batch_by_proposal_len
from vllm.sequence import SequenceGroupMetadata, get_all_seq_ids
from vllm.spec_decode.util import split_batch_by_proposal_len
def test_get_all_seq_ids():

View File

@ -230,7 +230,8 @@ class ModelConfig:
self,
parallel_config: "ParallelConfig",
) -> None:
total_num_attention_heads = self.hf_text_config.num_attention_heads
total_num_attention_heads = getattr(self.hf_text_config,
"num_attention_heads", 0)
tensor_parallel_size = parallel_config.tensor_parallel_size
if total_num_attention_heads % tensor_parallel_size != 0:
raise ValueError(
@ -238,7 +239,8 @@ class ModelConfig:
" must be divisible by tensor parallel size "
f"({tensor_parallel_size}).")
total_num_hidden_layers = self.hf_text_config.num_hidden_layers
total_num_hidden_layers = getattr(self.hf_text_config,
"num_hidden_layers", 0)
pipeline_parallel_size = parallel_config.pipeline_parallel_size
if total_num_hidden_layers % pipeline_parallel_size != 0:
raise ValueError(
@ -341,8 +343,8 @@ class ModelConfig:
def get_num_attention_heads(self,
parallel_config: "ParallelConfig") -> int:
return self.hf_text_config.num_attention_heads // \
parallel_config.tensor_parallel_size
num_heads = getattr(self.hf_text_config, "num_attention_heads", 0)
return num_heads // parallel_config.tensor_parallel_size
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
total_num_hidden_layers = self.hf_text_config.num_hidden_layers
@ -818,7 +820,8 @@ class SpeculativeConfig:
speculative_model (Optional[str]): The name of the speculative
model, if provided.
num_speculative_tokens (Optional[int]): The number of speculative
tokens, if provided.
tokens, if provided. Will default to the number in the draft
model config if present, otherwise is required.
speculative_max_model_len (Optional[int]): The maximum model len of
the speculative model. Used when testing the ability to skip
speculation for some sequences.
@ -841,24 +844,18 @@ class SpeculativeConfig:
the necessary conditions are met, else None.
"""
if speculative_model is None and num_speculative_tokens is None:
if speculative_model is None:
if num_speculative_tokens is not None:
raise ValueError("num_speculative_tokens was provided without "
"speculative_model.")
return None
if speculative_model is not None and num_speculative_tokens is None:
raise ValueError(
"Expected both speculative_model and "
"num_speculative_tokens to be provided, but found "
f"{speculative_model=} and {num_speculative_tokens=}.")
if (speculative_disable_by_batch_size is not None
and speculative_disable_by_batch_size < 2):
raise ValueError("Expect the batch size threshold of disabling "
"speculative decoding is > 1, but got "
f"{speculative_disable_by_batch_size=}")
assert (speculative_model is not None
and num_speculative_tokens is not None)
if enable_chunked_prefill:
raise ValueError(
"Speculative decoding and chunked prefill are "
@ -912,6 +909,27 @@ class SpeculativeConfig:
max_logprobs=target_model_config.max_logprobs,
)
if (draft_model_config.hf_config.model_type == "mlp_speculator"
and target_parallel_config.world_size != 1):
# MLPSpeculator TP support will be added very soon
raise ValueError(
"Speculative decoding with mlp_speculator models does not "
"yet support distributed inferencing (TP > 1).")
n_predict = getattr(draft_model_config.hf_config, "n_predict",
None)
if n_predict is not None:
if num_speculative_tokens is None:
# Default to max value defined in draft model config.
num_speculative_tokens = n_predict
elif num_speculative_tokens > n_predict:
# Verify provided value doesn't exceed the maximum
# supported by the draft model.
raise ValueError(
"Expected both speculative_model and "
"num_speculative_tokens to be provided, but found "
f"{speculative_model=} and {num_speculative_tokens=}.")
draft_model_config.max_model_len = (
SpeculativeConfig._maybe_override_draft_max_model_len(
speculative_max_model_len,
@ -923,6 +941,12 @@ class SpeculativeConfig:
SpeculativeConfig.create_draft_parallel_config(
target_parallel_config))
if num_speculative_tokens is None:
raise ValueError(
"num_speculative_tokens must be provided with "
"speculative_model unless the draft model config contains an "
"n_predict parameter.")
return SpeculativeConfig(
draft_model_config,
draft_parallel_config,

View File

@ -60,6 +60,7 @@ _GENERATION_MODELS = {
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
"XverseForCausalLM": ("xverse", "XverseForCausalLM"),
"Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"),
"MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"),
}
_EMBEDDING_MODELS = {

View File

@ -0,0 +1,143 @@
import math
from typing import Iterable, List, Tuple
import torch
import torch.nn as nn
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import SamplerOutput
class MLPSpeculatorLayerNorm(nn.Module):
"""
A L2 normalization implementation
...
Args
----
normalized_shape : int
Dimensionality of input data (size of final tensor axis)
eps : float
Safety term to prevent division by zero. Make sure the chosen value
fits in the range of your encoding scheme
(i.e. fp16 requires eps >= 6e-8).
"""
def __init__(
self,
normalized_shape,
eps=1e-06,
):
super(MLPSpeculatorLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.empty(normalized_shape))
self.bias = nn.Parameter(torch.empty(normalized_shape))
self.eps = eps
def forward(self, x):
xf = x
xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps)
x = xf.type_as(x)
x = self.weight * x
x = x + self.bias
return x
class MLPSpeculator(nn.Module):
def __init__(self, config, **kwargs) -> None:
super().__init__()
self.n_predict = config.n_predict
self.vocab_size = config.vocab_size
self.emb_dim = config.emb_dim
self.inner_dim = config.inner_dim if config.inner_dim != 0 \
else config.emb_dim
self.max_speculative_tokens = getattr(config, "max_speculative_tokens",
self.n_predict)
self.emb = nn.ModuleList([
VocabParallelEmbedding(config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
for _ in range(self.max_speculative_tokens)
])
self.proj = nn.ModuleList([
nn.Linear((self.emb_dim if i == 0 else self.inner_dim),
self.inner_dim,
bias=False) for i in range(self.max_speculative_tokens)
])
self.head = nn.ModuleList([
nn.Linear(self.inner_dim, self.vocab_size, bias=False)
for _ in range(self.max_speculative_tokens)
])
self.ln = nn.ModuleList([
MLPSpeculatorLayerNorm(self.inner_dim)
for _ in range(self.max_speculative_tokens)
])
self.state_weight = 0.5**(0.5 / config.n_predict)
self.emb_weight = math.sqrt(
(1 - self.state_weight**2) * (self.inner_dim / 2))
self.activation = nn.GELU()
self.config = config
self.logits_processor = LogitsProcessor(config.vocab_size,
config.vocab_size, 1.0)
self.sampler = Sampler()
def generate_proposals(
self,
input_ids: torch.Tensor,
previous_hidden_states: torch.Tensor,
num_predict_tokens: int,
sampling_metadata: SamplingMetadata,
) -> List[SamplerOutput]:
if num_predict_tokens > self.max_speculative_tokens:
raise ValueError(f"Max speculative tokens for model is "
f"{self.max_speculative_tokens}, but "
f"{num_predict_tokens} were requested")
# b x 1 x d
previous_hidden_states = previous_hidden_states.unsqueeze(1)
# b x 1
last_tokens = input_ids.unsqueeze(1)
next_tokens = []
for head_index in range(num_predict_tokens):
# Project and predict
z = self.emb[head_index](last_tokens) # b k d
states = self.proj[head_index](previous_hidden_states)
# Weighted add of state_weight*state and emb_weight*z
# Let subsequent LN take care of denominator
# state_weight is close to 1, so shouldn't be any precision issues
states.add_(z, alpha=self.emb_weight / self.state_weight)
states = self.activation(self.ln[head_index](states)) # b k d
# TODO: not yet supporting top_k_tokens_per_head
previous_hidden_states = states
logits = self.logits_processor(self.head[head_index].weight,
states, sampling_metadata)
output = self.sampler(logits.flatten(0, 1), sampling_metadata)
last_tokens = output.sampled_token_ids
next_tokens.append(output)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
param = params_dict[name.replace("speculator.", "")]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -794,6 +794,9 @@ class SamplerOutput:
# Spec decode metrics populated by workers.
spec_decode_worker_metrics: Optional["SpecDecodeWorkerMetrics"] = None
# Optional last hidden states from the model.
hidden_states: Optional[torch.Tensor] = None
def __getitem__(self, idx: int):
return self.outputs[idx]
@ -842,6 +845,46 @@ class PoolerOutput:
self.__class__) and self.outputs == other.outputs
def get_all_seq_ids(
seq_group_metadata_list: List[SequenceGroupMetadata]) -> List[int]:
"""Given a list of SequenceGroupMetadata, create a list of all
sequence ids.
"""
return [seq_id for sg in seq_group_metadata_list for seq_id in sg.seq_data]
class HiddenStates:
"""Hidden states corresponding to in-progress sequences.
Used in speculative decoding to pass hidden states from
the target model to the proposer model in the subsequent step.
seq_ids are the sequence ids of each entry of the batch
dimension of the hidden_states tensor"""
def __init__(self, seq_group_metadata_list: List[SequenceGroupMetadata],
hidden_states: torch.Tensor):
assert len(seq_group_metadata_list) == len(hidden_states)
self.seq_ids: List[int] = get_all_seq_ids(seq_group_metadata_list)
self.hidden_states: torch.Tensor = hidden_states
def update(self, seq_group_metadata_list: List[SequenceGroupMetadata],
hidden_states: torch.Tensor) -> None:
"""Update hidden states from target model invocation."""
assert len(seq_group_metadata_list) == len(hidden_states)
self.seq_ids.extend(get_all_seq_ids(seq_group_metadata_list))
self.hidden_states = torch.cat([self.hidden_states, hidden_states])
def prune(self,
seq_group_metadata_list: List[SequenceGroupMetadata]) -> None:
"""Prune to provided list of sequence ids."""
seq_ids = get_all_seq_ids(seq_group_metadata_list)
if seq_ids != self.seq_ids:
# Batch contents changed - prune removed sequences.
index = [self.seq_ids.index(seq_id) for seq_id in seq_ids]
self.hidden_states = self.hidden_states[index]
self.seq_ids = seq_ids
@dataclass
class ExecuteModelRequest:
"""The model execution request."""
@ -857,6 +900,8 @@ class ExecuteModelRequest:
num_lookahead_slots: int = 0
# The number of requests in the running queue.
running_queue_size: int = 0
# Optional hidden states from prior step.
previous_hidden_states: Optional[HiddenStates] = None
def clone(
self, seq_group_metadata_list: List[SequenceGroupMetadata]
@ -869,4 +914,5 @@ class ExecuteModelRequest:
blocks_to_copy=self.blocks_to_copy.copy(),
num_lookahead_slots=self.num_lookahead_slots,
running_queue_size=self.running_queue_size,
previous_hidden_states=self.previous_hidden_states,
)

View File

@ -4,11 +4,10 @@ from typing import Iterator, List, Tuple
import torch
from vllm.sequence import (ExecuteModelRequest, SamplerOutput, SequenceData,
SequenceGroupMetadata)
SequenceGroupMetadata, get_all_seq_ids)
from vllm.spec_decode.interfaces import (SpeculativeProposals,
SpeculativeScorer, SpeculativeScores)
from vllm.spec_decode.util import (get_all_seq_ids, nvtx_range,
sampler_output_to_torch,
from vllm.spec_decode.util import (nvtx_range, sampler_output_to_torch,
split_batch_by_proposal_len)
from vllm.worker.worker_base import WorkerBase
@ -98,6 +97,7 @@ class BatchExpansionTop1Scorer(SpeculativeScorer):
probs=all_probs,
token_ids=all_tokens,
logprobs=spec_logprobs,
hidden_states=target_sampler_output.hidden_states,
)
def _expand_batch(

View File

@ -1,5 +1,6 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Optional
import torch
@ -46,6 +47,9 @@ class SpeculativeScores:
# tokens and also non-speculative normal decoding.
token_ids: torch.Tensor
# Optional last hidden states from the scoring model.
hidden_states: Optional[torch.Tensor] = None
def __repr__(self):
return (f"SpeculativeScores("
f"probs={self.probs.shape}, "

View File

@ -0,0 +1,87 @@
from typing import List, Optional, Tuple
import torch
from vllm.model_executor import SamplingMetadata
from vllm.sequence import (ExecuteModelRequest, SamplerOutput,
SequenceGroupMetadata)
from vllm.spec_decode.multi_step_worker import MultiStepWorker
from vllm.spec_decode.proposer_worker_base import NonLLMProposerWorkerBase
from vllm.worker.model_runner import ModelInput
class MLPSpeculatorWorker(NonLLMProposerWorkerBase, MultiStepWorker):
"""Worker for MLPSpeculator models.
Not currently compatible with LoRA or chunked prefill.
"""
@torch.inference_mode()
def sampler_output(
self,
execute_model_req: ExecuteModelRequest,
sample_len: int,
) -> Tuple[List[SamplerOutput], bool]:
"""Run the model forward pass to generate sample_len future tokens.
Returns the list of sampler output, one per layer, along with indicator
of whether torch tensor in sampler output need to be transposed in
latter sampler_output_to_torch logic.
For mlp spec worker, this indicator shall be True.
"""
self._raise_if_unsupported(execute_model_req)
seq_group_metadata_list = execute_model_req.seq_group_metadata_list
(input_tokens, seq_lens,
query_lens) = self._prepare_input_tensors(seq_group_metadata_list)
sampling_metadata = SamplingMetadata.prepare(
seq_group_metadata_list, seq_lens, query_lens, self.device,
self.model_runner.pin_memory)
model_outputs = self.model_runner.model.generate_proposals(
input_ids=input_tokens,
previous_hidden_states=execute_model_req.previous_hidden_states.
hidden_states,
num_predict_tokens=sample_len,
sampling_metadata=sampling_metadata)
assert len(model_outputs) == sample_len
return model_outputs, True
def _prepare_input_tensors(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[torch.Tensor, List[int], List[int]]:
if not seq_group_metadata_list:
return ModelInput.empty(self.device)
input_tokens: List[int] = []
seq_lens: List[int] = []
query_lens: List[int] = []
for seq_group_metadata in seq_group_metadata_list:
is_prompt = seq_group_metadata.is_prompt
for seq_data in seq_group_metadata.seq_data.values():
seq_data_len = seq_data.get_len()
if is_prompt:
context_len = seq_data.get_num_computed_tokens()
seq_len = min(
seq_data_len,
context_len + seq_group_metadata.token_chunk_size)
tokens = seq_data.get_token_ids()[context_len:seq_len]
seq_lens.append(seq_len)
input_tokens.extend(tokens)
query_lens.append(seq_len - context_len)
else:
seq_lens.append(seq_data_len)
input_tokens.append(seq_data.get_last_token_id())
query_lens.append(1)
input_tokens_tensor = torch.tensor(input_tokens,
dtype=torch.long,
device=self.device)
return input_tokens_tensor, seq_lens, query_lens

View File

@ -8,16 +8,18 @@ from vllm.distributed.communication_op import broadcast_tensor_dict
from vllm.logger import init_logger
from vllm.model_executor.layers.rejection_sampler import RejectionSampler
from vllm.sequence import (CompletionSequenceGroupOutput, ExecuteModelRequest,
SamplerOutput, SequenceGroupMetadata)
HiddenStates, SamplerOutput, SequenceGroupMetadata,
get_all_seq_ids)
from vllm.spec_decode.batch_expansion import BatchExpansionTop1Scorer
from vllm.spec_decode.interfaces import (SpeculativeProposals,
SpeculativeScorer, SpeculativeScores)
from vllm.spec_decode.metrics import AsyncMetricsCollector
from vllm.spec_decode.mlp_speculator_worker import MLPSpeculatorWorker
from vllm.spec_decode.multi_step_worker import MultiStepWorker
from vllm.spec_decode.ngram_worker import NGramWorker
from vllm.spec_decode.proposer_worker_base import ProposerWorkerBase
from vllm.spec_decode.util import (create_sequence_group_output,
get_all_num_logprobs, get_all_seq_ids,
get_all_num_logprobs,
get_sampled_token_logprobs, nvtx_range,
split_batch_by_proposal_len)
from vllm.worker.worker import Worker
@ -104,6 +106,10 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
proposer_worker = NGramWorker(**draft_worker_kwargs)
proposer_worker.set_ngram_window_size(ngram_prompt_lookup_min,
ngram_prompt_lookup_max)
elif draft_worker_kwargs[
"model_config"].hf_config.model_type == "mlp_speculator":
proposer_worker = MLPSpeculatorWorker(**draft_worker_kwargs)
disable_bonus_tokens = False
else:
proposer_worker = MultiStepWorker(**draft_worker_kwargs)
@ -155,6 +161,10 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
# Lazy initiazliation.
self.scorer: SpeculativeScorer
# Hidden states from target model to pass to proposer
# in the subsequent step.
self.previous_hidden_states: Optional[HiddenStates] = None
def init_device(self) -> None:
"""Initialize both scorer and proposer models.
"""
@ -337,6 +347,16 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
assert len(sampler_output) == 1
sampler_output = sampler_output[0]
# Store hidden states from target model execution.
hidden_states = sampler_output.hidden_states
if hidden_states is not None:
if self.previous_hidden_states is None:
self.previous_hidden_states = HiddenStates(
execute_model_req.seq_group_metadata_list, hidden_states)
else:
self.previous_hidden_states.update(
execute_model_req.seq_group_metadata_list, hidden_states)
# Clear device tensors from sampler output. This reduces communication
# overhead when the engine runs in a different process than the workers.
sampler_output.probs = None
@ -383,6 +403,10 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
"""
assert num_lookahead_slots == execute_model_req.num_lookahead_slots
# Pass last hidden states from target model to proposer
execute_model_req.previous_hidden_states = self.previous_hidden_states
self.previous_hidden_states = None
# Generate proposals using draft worker.
proposals = self.proposer_worker.get_spec_proposals(execute_model_req)
@ -466,6 +490,20 @@ class SpecDecodeWorker(LoraNotSupportedWorkerBase):
# metadata.
accepted_token_ids[original_indices] = accepted_token_ids.clone()
hidden_states = proposal_scores.hidden_states
if hidden_states is not None:
# Contract hidden states based on accepted tokens
hs_size = hidden_states.shape[1]
hidden_states = hidden_states.reshape(-1, max_proposal_len + 1,
hs_size)
accepted_index = accepted_token_ids + 1 # Convert -1 to 0
accepted_index = accepted_index.count_nonzero(dim=1).add_(-1)
index = accepted_index[:, None, None].expand(-1, 1, hs_size)
hidden_states = hidden_states.gather(1, index).squeeze(1) # b x d
# Store hidden states from target model for subsequent decode step
self.previous_hidden_states = HiddenStates(seq_group_metadata_list,
hidden_states)
return accepted_token_ids, logprobs
def _create_output_sampler_list(

View File

@ -65,9 +65,13 @@ class Top1Proposer(SpeculativeProposer):
# token_ids is like [batch] format in proposal_len size list,
# while if it is false, the format would be [proposal_len]
# in batch size list
hidden_states = execute_model_req.previous_hidden_states
if hidden_states is not None:
hidden_states.prune(nonzero_proposal_len_seqs)
nonzero_execute_model_req = ExecuteModelRequest(
seq_group_metadata_list=nonzero_proposal_len_seqs,
num_lookahead_slots=proposal_len,
previous_hidden_states=hidden_states,
)
maybe_sampler_output, transposed = self._worker.sampler_output(
execute_model_req=nonzero_execute_model_req,

View File

@ -10,14 +10,6 @@ from vllm.sequence import (CompletionSequenceGroupOutput, Logprob,
SeqId = int
def get_all_seq_ids(
seq_group_metadata_list: List[SequenceGroupMetadata]) -> List[SeqId]:
"""Given a list of SequenceGroupMetadata, create a list of all
sequence ids.
"""
return [seq_id for sg in seq_group_metadata_list for seq_id in sg.seq_data]
def get_all_num_logprobs(
seq_group_metadata_list: List[SequenceGroupMetadata]) -> List[int]:
"""Given a list of SequenceGroupMetadata, create a list of all num_logprobs.

View File

@ -1,3 +1,4 @@
import contextlib
from typing import Dict, Optional, Type
from transformers import PretrainedConfig
@ -5,7 +6,13 @@ from transformers import PretrainedConfig
from vllm.envs import VLLM_USE_MODELSCOPE
from vllm.logger import init_logger
from vllm.transformers_utils.configs import (ChatGLMConfig, DbrxConfig,
JAISConfig, MPTConfig, RWConfig)
JAISConfig, MLPSpeculatorConfig,
MPTConfig, RWConfig)
if VLLM_USE_MODELSCOPE:
from modelscope import AutoConfig
else:
from transformers import AutoConfig
logger = init_logger(__name__)
@ -16,8 +23,13 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
"jais": JAISConfig,
"mlp_speculator": MLPSpeculatorConfig,
}
for name, cls in _CONFIG_REGISTRY.items():
with contextlib.suppress(ValueError):
AutoConfig.register(name, cls)
def get_config(model: str,
trust_remote_code: bool,
@ -26,10 +38,6 @@ def get_config(model: str,
rope_scaling: Optional[dict] = None,
rope_theta: Optional[float] = None) -> PretrainedConfig:
try:
if VLLM_USE_MODELSCOPE:
from modelscope import AutoConfig
else:
from transformers import AutoConfig
config = AutoConfig.from_pretrained(
model,
trust_remote_code=trust_remote_code,

View File

@ -5,6 +5,7 @@ from vllm.transformers_utils.configs.dbrx import DbrxConfig
# `FalconConfig` class from the official HuggingFace transformers library.
from vllm.transformers_utils.configs.falcon import RWConfig
from vllm.transformers_utils.configs.jais import JAISConfig
from vllm.transformers_utils.configs.mlp_speculator import MLPSpeculatorConfig
from vllm.transformers_utils.configs.mpt import MPTConfig
__all__ = [
@ -13,4 +14,5 @@ __all__ = [
"MPTConfig",
"RWConfig",
"JAISConfig",
"MLPSpeculatorConfig",
]

View File

@ -0,0 +1,50 @@
from typing import List, Optional
from transformers import PretrainedConfig
class MLPSpeculatorConfig(PretrainedConfig):
model_type = "mlp_speculator"
attribute_map = {
"hidden_size": "emb_dim",
}
def __init__(self,
vocab_size: int = 32000,
emb_dim: int = 4096,
inner_dim: int = 0,
n_predict: int = 3,
top_k_tokens_per_head: Optional[List[int]] = None,
n_candidates: int = 5,
**kwargs):
"""
Initialize an MLPSpeculatorConfig
Args:
vocab_size: int
the model vocab size
emb_dim: int
the model embedding dimension
inner_dim: int
the inner dimension of the model. If 0, will be the emb_dim.
n_predict: int
the number of lookaheads for the speculator
top_k_tokens_per_head: List[int]
Number of tokens to consider from each head when forming the
candidate tree.
For each candidate branch in the tree, head n produces topk[n]
additional sub-branches.
n_candidates: int
number of child candidates to create per sequence
"""
if top_k_tokens_per_head is None:
top_k_tokens_per_head = [5, 4, 3]
assert len(top_k_tokens_per_head) == n_predict
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.inner_dim = inner_dim
self.n_predict = n_predict
self.top_k_tokens_per_head = top_k_tokens_per_head
self.n_candidates = n_candidates
super().__init__(**kwargs)

View File

@ -86,6 +86,7 @@ class ModelRunner:
kv_cache_dtype: Optional[str] = "auto",
is_driver_worker: bool = False,
vision_language_config: Optional[VisionLanguageConfig] = None,
return_hidden_states: bool = False,
):
self.model_config = model_config
self.parallel_config = parallel_config
@ -96,6 +97,7 @@ class ModelRunner:
self.load_config = load_config
self.is_driver_worker = is_driver_worker
self.vision_language_config = vision_language_config
self.return_hidden_states = return_hidden_states
self.device = self.device_config.device
self.pin_memory = is_pin_memory_available()
@ -116,15 +118,17 @@ class ModelRunner:
self.graph_block_tables = np.zeros(
(max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()),
dtype=np.int32)
num_attn_heads = self.model_config.get_num_attention_heads(
self.parallel_config)
self.attn_backend = get_attn_backend(
self.model_config.get_num_attention_heads(self.parallel_config),
num_attn_heads,
self.model_config.get_head_size(),
self.model_config.get_num_kv_heads(self.parallel_config),
self.model_config.get_sliding_window(),
self.model_config.dtype,
self.kv_cache_dtype,
self.block_size,
)
) if num_attn_heads else None
# Create processor for multi-modal data
if self.vision_language_config is not None:
@ -762,11 +766,19 @@ class ModelRunner:
return None
# Sample the next token.
output = self.model.sample(
output: SamplerOutput = self.model.sample(
logits=logits,
sampling_metadata=sampling_metadata,
)
if self.return_hidden_states:
# we only need to pass hidden states of most recent token
assert seq_group_metadata_list is not None
if seq_group_metadata_list[0].is_prompt:
hidden_states = hidden_states.index_select(
0, sampling_metadata.selected_token_indices)
output.hidden_states = hidden_states
return output
@torch.inference_mode()

View File

@ -70,6 +70,14 @@ class Worker(WorkerBase):
assert not self.lora_config, (
"To be tested: vision language model with LoRA settings.")
# Return hidden states from target model if the draft model is an
# mlp_speculator
speculative_args = {} if speculative_config is None \
or (speculative_config.draft_model_config.model ==
model_config.model) \
or (speculative_config.draft_model_config.hf_config.model_type !=
"mlp_speculator") else {"return_hidden_states": True}
ModelRunnerClass = (EmbeddingModelRunner if
self.model_config.embedding_mode else ModelRunner)
self.model_runner = ModelRunnerClass(
@ -83,6 +91,7 @@ class Worker(WorkerBase):
kv_cache_dtype=self.cache_config.cache_dtype,
is_driver_worker=is_driver_worker,
vision_language_config=vision_language_config,
**speculative_args,
)
# Uninitialized cache engine. Will be initialized by
# initialize_cache.