mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-08 03:25:18 +08:00
[Core] add and implement VLLM_LOGITS_PROCESSOR_THREADS (#12368)
Signed-off-by: Aviv Keshet <akeshet@scaledcognition.com>
This commit is contained in:
parent
75e94309e8
commit
b3a0d01e45
@ -31,6 +31,7 @@ if TYPE_CHECKING:
|
||||
VLLM_LOGGING_LEVEL: str = "INFO"
|
||||
VLLM_LOGGING_PREFIX: str = ""
|
||||
VLLM_LOGGING_CONFIG_PATH: Optional[str] = None
|
||||
VLLM_LOGITS_PROCESSOR_THREADS: Optional[int] = None
|
||||
VLLM_TRACE_FUNCTION: int = 0
|
||||
VLLM_ATTENTION_BACKEND: Optional[str] = None
|
||||
VLLM_USE_FLASHINFER_SAMPLER: Optional[bool] = None
|
||||
@ -282,6 +283,14 @@ environment_variables: Dict[str, Callable[[], Any]] = {
|
||||
"VLLM_LOGGING_PREFIX":
|
||||
lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),
|
||||
|
||||
# if set, vllm will call logits processors in a thread pool with this many
|
||||
# threads. This is useful when using custom logits processors that either
|
||||
# (a) launch additional CUDA kernels or (b) do significant CPU-bound work
|
||||
# while not holding the python GIL, or both.
|
||||
"VLLM_LOGITS_PROCESSOR_THREADS":
|
||||
lambda: int(os.getenv("VLLM_LOGITS_PROCESSOR_THREADS", "0"))
|
||||
if "VLLM_LOGITS_PROCESSOR_THREADS" in os.environ else None,
|
||||
|
||||
# Trace function calls
|
||||
# If set to 1, vllm will trace function calls
|
||||
# Useful for debugging
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""A layer that compute logits from hidden_stats."""
|
||||
import inspect
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
@ -15,6 +16,11 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
_logits_processor_threadpool: Optional[ThreadPoolExecutor] = None
|
||||
if envs.VLLM_LOGITS_PROCESSOR_THREADS is not None:
|
||||
_logits_processor_threadpool = ThreadPoolExecutor(
|
||||
envs.VLLM_LOGITS_PROCESSOR_THREADS)
|
||||
|
||||
|
||||
class LogitsProcessor(nn.Module):
|
||||
"""Process logits and apply logits processors from sampling metadata.
|
||||
@ -135,6 +141,7 @@ def _apply_logits_processors(
|
||||
) -> torch.Tensor:
|
||||
found_logits_processors = False
|
||||
logits_processed = 0
|
||||
logits_row_ids_and_logits_row_futures = []
|
||||
for seq_group in sampling_metadata.seq_groups:
|
||||
seq_ids = seq_group.seq_ids
|
||||
sampling_params = seq_group.sampling_params
|
||||
@ -148,22 +155,39 @@ def _apply_logits_processors(
|
||||
past_tokens_ids = seq_group.seq_data[seq_id].output_token_ids
|
||||
prompt_tokens_ids = seq_group.seq_data[seq_id].prompt_token_ids
|
||||
|
||||
for logits_processor in logits_processors:
|
||||
parameters = inspect.signature(logits_processor).parameters
|
||||
if len(parameters) == 3:
|
||||
logits_row = logits_processor(prompt_tokens_ids,
|
||||
past_tokens_ids,
|
||||
logits_row)
|
||||
else:
|
||||
logits_row = logits_processor(past_tokens_ids,
|
||||
logits_row)
|
||||
|
||||
logits[logits_row_idx] = logits_row
|
||||
if _logits_processor_threadpool is not None:
|
||||
logits_row_ids_and_logits_row_futures.append(
|
||||
(logits_row_idx,
|
||||
_logits_processor_threadpool.submit(
|
||||
_apply_logits_processors_single_seq, logits_row,
|
||||
logits_processors, past_tokens_ids,
|
||||
prompt_tokens_ids)))
|
||||
else:
|
||||
logits[logits_row_idx] = \
|
||||
_apply_logits_processors_single_seq(
|
||||
logits_row, logits_processors, past_tokens_ids,
|
||||
prompt_tokens_ids)
|
||||
|
||||
logits_processed += len(seq_group.sample_indices) + len(
|
||||
seq_group.prompt_logprob_indices)
|
||||
|
||||
for logits_row_idx, future in logits_row_ids_and_logits_row_futures:
|
||||
logits[logits_row_idx] = future.result()
|
||||
|
||||
if found_logits_processors:
|
||||
# verifies that no rows in logits were missed unexpectedly
|
||||
assert logits_processed == logits.shape[0]
|
||||
return logits
|
||||
|
||||
|
||||
def _apply_logits_processors_single_seq(logits_row, logits_processors,
|
||||
past_tokens_ids,
|
||||
prompt_tokens_ids) -> torch.Tensor:
|
||||
for logits_processor in logits_processors:
|
||||
parameters = inspect.signature(logits_processor).parameters
|
||||
if len(parameters) == 3:
|
||||
logits_row = logits_processor(prompt_tokens_ids, past_tokens_ids,
|
||||
logits_row)
|
||||
else:
|
||||
logits_row = logits_processor(past_tokens_ids, logits_row)
|
||||
return logits_row
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user