Migrate LlavaNextImageInputs to TensorSchema (#21774)

Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Benji Beck 2025-08-10 09:05:21 -07:00 committed by GitHub
parent 65a7917be4
commit b4e2916721
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 35 additions and 64 deletions

View File

@ -3,7 +3,7 @@
from abc import abstractmethod
from collections.abc import Iterable, Mapping
from typing import (Final, Literal, Optional, Protocol, TypedDict, TypeVar,
from typing import (Annotated, Final, Literal, Optional, Protocol, TypeVar,
Union)
import torch
@ -11,7 +11,6 @@ import torch.nn as nn
from transformers import BatchFeature, LlavaNextConfig, LlavaNextProcessor
from transformers.models.llava_next.modeling_llava_next import (
get_anyres_image_grid_shape, unpad_image)
from typing_extensions import NotRequired
from vllm.config import VllmConfig
from vllm.model_executor.sampling_metadata import SamplingMetadata
@ -19,6 +18,7 @@ from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig
from vllm.multimodal.parse import ImageSize
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .clip import CLIPVisionModel
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
@ -30,32 +30,36 @@ from .utils import (AutoWeightsLoader, WeightsMapper, embed_multimodal,
flatten_bn, init_vllm_registered_model, maybe_prefix)
class LlavaNextImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
pixel_values: Union[torch.Tensor, list[torch.Tensor]]
class LlavaNextImagePixelInputs(TensorSchema):
"""
Shape:
`(batch_size * num_images, 1 + num_patches, num_channels, height, width)`
Dimensions:
- bn: Batch size * number of images
- np: Number of patches + 1
- c: Number of channels (3)
- h: Height
- w: Width
Note that `num_patches` may be different per batch and image,
in which case the data is passed as a list instead of a batched tensor.
"""
type: Literal["pixel_values"] = "pixel_values"
pixel_values: Annotated[
Union[torch.Tensor, list[torch.Tensor]],
TensorShape("bn", "np", 3, "h", "w", dynamic_dims={"np"})]
image_sizes: NotRequired[torch.Tensor]
image_sizes: Annotated[Optional[torch.Tensor], TensorShape("bn", 2)]
# This should be in `(height, width)` format.
class LlavaNextImageEmbeddingInputs(TensorSchema):
"""
Shape: `(batch_size * num_images, 2)`
This should be in `(height, width)` format.
"""
class LlavaNextImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
data: torch.Tensor
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
`hidden_size` must match the hidden size of language model backbone.
Dimensions:
- bn: Batch size * number of images
- ifs: Image feature size
- hs: Hidden size (must match language model backbone)
"""
type: Literal["image_embeds"] = "image_embeds"
data: Annotated[torch.Tensor, TensorShape("bn", "ifs", "hs")]
LlavaNextImageInputs = Union[LlavaNextImagePixelInputs,
@ -269,44 +273,6 @@ class LlavaNextForConditionalGeneration(nn.Module, SupportsMultiModal,
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _validate_image_sizes(self, data: torch.Tensor) -> torch.Tensor:
expected_dims = (2, )
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape)
if actual_dims != expected_dims:
expected_expr = str(expected_dims)
raise ValueError(
f"The expected shape of image sizes per image per batch "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _validate_pixel_values(
self, data: Union[torch.Tensor, list[torch.Tensor]]
) -> Union[torch.Tensor, list[torch.Tensor]]:
h = w = self.config.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape[1:])
if actual_dims != expected_dims:
expected_expr = ("num_patches", *map(str, expected_dims))
raise ValueError(
"The expected shape of pixel values per image per batch "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[LlavaNextImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
@ -325,13 +291,15 @@ class LlavaNextForConditionalGeneration(nn.Module, SupportsMultiModal,
raise ValueError("Incorrect type of image sizes. "
f"Got type: {type(image_sizes)}")
expected_h = expected_w = self.config.vision_config.image_size
return LlavaNextImagePixelInputs(
type="pixel_values",
pixel_values=self._validate_pixel_values(
flatten_bn(pixel_values)),
image_sizes=self._validate_image_sizes(
flatten_bn(image_sizes, concat=True)),
)
pixel_values=flatten_bn(pixel_values),
image_sizes=flatten_bn(image_sizes, concat=True),
resolve_bindings={
"h": expected_h,
"w": expected_w,
})
if image_embeds is not None:
if not isinstance(image_embeds, torch.Tensor):

View File

@ -60,6 +60,9 @@ class TensorSchema:
def __getitem__(self, item) -> Any:
return getattr(self, item)
def get(self, item, default=None) -> Any:
return getattr(self, item, default)
def _match_shape_with_dynamic(self, actual: tuple[int, ...],
reference: tuple[int, ...],
expected_shape: tuple[Union[int, str], ...],