Mixtral 8x7B support (#2011)

Co-authored-by: Pierre Stock <p@mistral.ai>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
This commit is contained in:
Pierre Stock 2023-12-11 10:09:15 +01:00 committed by GitHub
parent 2e8fc0d4c3
commit b5f882cc98
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 538 additions and 0 deletions

View File

@ -60,6 +60,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Phi-1.5 (`microsoft/phi-1_5`, etc.)

View File

@ -33,6 +33,7 @@ _MODEL_REGISTRY = {
"LlamaForCausalLM": LlamaForCausalLM,
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
"MistralForCausalLM": MistralForCausalLM,
"MixtralForCausalLM": MixtralForCausalLM,
# transformers's mpt class has lower case
"MptForCausalLM": MPTForCausalLM,
"MPTForCausalLM": MPTForCausalLM,

View File

@ -10,6 +10,7 @@ from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
from vllm.model_executor.models.internlm import InternLMForCausalLM
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.model_executor.models.mistral import MistralForCausalLM
from vllm.model_executor.models.mixtral import MixtralForCausalLM
from vllm.model_executor.models.mpt import MPTForCausalLM
from vllm.model_executor.models.opt import OPTForCausalLM
from vllm.model_executor.models.phi_1_5 import PhiForCausalLM
@ -35,5 +36,6 @@ __all__ = [
"PhiForCausalLM",
"QWenLMHeadModel",
"MistralForCausalLM",
"MixtralForCausalLM",
"YiForCausalLM",
]

View File

@ -0,0 +1,534 @@
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mixtral model."""
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import MistralConfig
try:
import megablocks.ops as ops
except ImportError:
print("MegaBlocks not found, please see "
"https://github.com/stanford-futuredata/megablocks/. "
"Note that MegaBlocks depends on mosaicml-turbo, which only "
"supports python 3.10.")
try:
import stk
except ImportError:
print(
"STK not found: please see https://github.com/stanford-futuredata/stk")
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.model_executor.utils import set_weight_attrs
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
return x.view(1) if len(x.size()) == 0 else x
class MixtralAttention(nn.Module):
def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
sliding_window: Optional[int] = None) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.wqkv = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
)
self.wo = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=int(self.rope_theta),
is_neox_style=False, # weights not in HF format
)
self.attn = PagedAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
sliding_window=self.sliding_window,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.wqkv(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
cache_event)
output, _ = self.wo(attn_output)
return output
class BlockSparseMoE(nn.Module):
"""
Built on the paper and library Megablocks as described in
https://arxiv.org/abs/2211.15841. This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accomodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, hidden_dim: int, ffn_dim: int, num_experts: int,
top_k: int):
super().__init__()
self.hidden_dim = hidden_dim
self.ffn_dim = ffn_dim
self.num_experts = num_experts
self.top_k = top_k
# gating
self.gate = nn.Linear(self.hidden_dim,
self.num_experts,
bias=False,
device=torch.cuda.current_device())
tp_size = get_tensor_model_parallel_world_size()
assert self.ffn_dim % tp_size == 0
self.ffn_dim_per_partition = self.ffn_dim // tp_size
# merged expert weights, all of size (ffn_dim * n_experts, model_dim)
self.w1 = nn.Parameter(
torch.empty(self.ffn_dim_per_partition * self.num_experts,
self.hidden_dim,
device=torch.cuda.current_device()))
set_weight_attrs(self.w1, {"weight_loader": self.moe_weight_loader})
self.w2 = nn.Parameter(
torch.empty(self.ffn_dim_per_partition * self.num_experts,
self.hidden_dim,
device=torch.cuda.current_device()))
set_weight_attrs(self.w2, {"weight_loader": self.moe_weight_loader})
self.w3 = nn.Parameter(
torch.empty(self.ffn_dim_per_partition * self.num_experts,
self.hidden_dim,
device=torch.cuda.current_device()))
set_weight_attrs(self.w3, {"weight_loader": self.moe_weight_loader})
# Calculate the number of bits needed to represent the expert indices
# so that we can pass it to radix sort.
self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
self.blocking = 128
self.quantize_scatter_num_bits = -1
# Calculate the number of bits needed to represent the column indices
# in the intermediate sparse matrix.
max_column_index = (self.ffn_dim * self.num_experts) // self.blocking
self.transpose_sort_end_bit = max(
int(np.ceil(np.log2(max_column_index))), 1)
def moe_weight_loader(self, param: nn.Parameter,
loaded_weight: torch.Tensor) -> None:
"""
Load the weights for the MoE linear layer.
"""
tp_rank = get_tensor_model_parallel_rank()
shard_size = self.ffn_dim_per_partition
loaded_weight = loaded_weight.view(self.num_experts, self.ffn_dim, -1)
loaded_weight = loaded_weight[:, shard_size * tp_rank:shard_size *
(tp_rank + 1)]
loaded_weight = loaded_weight.reshape_as(param)
param.data.copy_(loaded_weight)
def sparse_transpose(
self, size: int, row_indices,
column_indices) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
block_columns = size[1] // self.blocking
# Sort row indices by column indices to get the transposed matrix's
# column indices.
#
# NOTE: Our sort operation uses the same width indices as the input
# values. To avoid overflow when we have large activation matrices
# we cast to 32-bit before sorting.
_, gather_indices = ops.sort(column_indices.int(),
self.transpose_sort_end_bit)
# There are a constant number of blocks in every row of the sparse
# matrix. A blocks offset is:
#
# row_index * blocks_per_row + column_index % blocks_per_row
#
# Once we have the block offsets ordered for transposition we can
# divide by blocks_per_row to get the transposed column indices.
column_indices_t = row_indices.gather(0, gather_indices.long())
block_offsets_t = gather_indices.int()
zero = torch.zeros((1, ), dtype=torch.int32, device=row_indices.device)
nnz_per_column = ops.histogram(column_indices, block_columns)
nnz_per_column = ops.inclusive_cumsum(nnz_per_column, 0)
offsets_t = torch.cat([zero, nnz_per_column])
return column_indices_t, offsets_t, block_offsets_t
def topology(self, x: torch.Tensor,
padded_bins: torch.Tensor) -> stk.Matrix:
padded_tokens, _ = x.size()
assert padded_tokens % self.blocking == 0
assert self.ffn_dim_per_partition % self.blocking == 0
# Offsets for the sparse matrix. All rows have the
# same number of nonzero blocks dictated by the
# dimensionality of a single expert.
block_rows = padded_tokens // self.blocking
blocks_per_row = self.ffn_dim_per_partition // self.blocking
offsets = torch.arange(
0,
block_rows * blocks_per_row + 1,
blocks_per_row,
dtype=torch.int32,
device=x.device,
)
# Indices for the sparse matrix. The indices for
# the intermediate matrix are dynamic depending
# on the mapping of tokens to experts.
column_indices = ops.topology(padded_bins, self.blocking, block_rows,
blocks_per_row)
# TODO(tgale): This is unused. Remove the need for this in stk.
# For now, use meta init to save the device memory.
data = torch.empty(
column_indices.numel(),
self.blocking,
self.blocking,
dtype=x.dtype,
device="meta",
)
shape = (padded_tokens, self.ffn_dim_per_partition * self.num_experts)
row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
column_indices_t, offsets_t, block_offsets_t = self.sparse_transpose(
shape, row_indices, column_indices)
return stk.Matrix(
shape,
data,
row_indices,
column_indices,
offsets,
column_indices_t,
offsets_t,
block_offsets_t,
)
def indices_and_padded_bins(
self, selected_experts: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
torch.Tensor]:
# Sort the expert ids to produce the scatter/gather
# indices for the permutation.
selected_experts = selected_experts.int()
bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit)
# Histogram the expert ids to identify the number of
# tokens routed to each expert.
tokens_per_expert = ops.histogram(selected_experts, self.num_experts)
# Round the token counts up to the block size used in
# the matrix muliplications. Caculate the starting
# position of each bin.
padded_tokens_per_expert = ops.round_up(tokens_per_expert,
self.blocking)
padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
padded_bins = promote_scalar(padded_bins)
# Calculate the bin bounds for the sorted tokens.
bins = ops.inclusive_cumsum(tokens_per_expert, 0)
bins = promote_scalar(bins)
return indices, bin_ids, bins, padded_bins, tokens_per_expert
@torch.inference_mode()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
x: (sequence_length, model_dim)
gate_logits: (sequence_length, n_experts)
"""
# optional reshape
input_shape = x.shape
x = x.view(-1, input_shape[-1])
# gate_logits: (sequence_length, n_experts)
gate_logits = self.gate(x)
# all_probs: (sequence_length, n_experts) and upcast for softmax
all_probs = F.softmax(gate_logits, dim=1, dtype=torch.float)
# weights, selected_experts: (sequence_length, top-k)
weights, selected_experts = torch.topk(all_probs, self.top_k, dim=-1)
weights /= weights.sum(dim=-1, keepdim=True)
weights = weights.flatten().to(x.dtype)
selected_experts = selected_experts.flatten()
(indices, bin_ids, bins, padded_bins,
_) = self.indices_and_padded_bins(selected_experts)
# Permute tokens and pad to prepare expert computation
# (top_k * sequence_length + padding, model_dim)
x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins,
self.top_k)
# Create the sparse matrix topology
with torch.no_grad():
topo = self.topology(x, padded_bins)
# Perform the expert computation
# First Dense x Dense -> Sparse for w1 and w3,
# (top_k * sequence_length + padding, ffn_dim * n_experts)
x = stk.Matrix(
topo.size(),
F.silu(stk.ops.sdd(x, self.w1.t(), topo).data) *
stk.ops.sdd(x, self.w3.t(), topo).data,
topo.row_indices,
topo.column_indices,
topo.offsets,
topo.column_indices_t,
topo.offsets_t,
topo.block_offsets_t,
)
# Then Sparse x Dense -> Dense for w2
# (top_k * sequence_length + padding, model_dim)
x = stk.ops.dsd(x, self.w2)
x = tensor_model_parallel_all_reduce(x)
# Permute back and remove padding
# (top_k * sequence_length, model_dim)
x = ops.padded_scatter(
x,
indices,
bin_ids,
weights,
bins,
padded_bins,
self.top_k,
self.quantize_scatter_num_bits,
)
return x.view(*input_shape)
class MixtralDecoderLayer(nn.Module):
def __init__(
self,
config: MistralConfig,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
self.attention = MixtralAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
sliding_window=config.sliding_window)
self.block_sparse_moe = BlockSparseMoE(
hidden_dim=self.hidden_size,
ffn_dim=config.intermediate_size,
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
)
self.attention_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
x: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
r = self.attention(
positions=positions,
hidden_states=self.attention_norm(x),
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
h = x + r
r = self.block_sparse_moe(self.ffn_norm(h))
out = h + r
return out
class MixtralForCausalLM(nn.Module):
def __init__(
self,
config: MistralConfig,
linear_method: Optional[LinearMethodBase] = None,
) -> None:
super().__init__()
self.config = config
assert linear_method is None
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.tok_embeddings: Union[nn.Embedding, None] = None
self.layers: nn.ModuleList = None
self.output: Union[nn.Linear, None] = None
self.sampler: Union[Sampler, None] = None
self.tok_embeddings = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
self.sampler = Sampler(config.vocab_size)
self.layers = nn.ModuleList([
MixtralDecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.tok_embeddings(input_ids)
# forward
for i in range(len(self.layers)):
cache_event = None if cache_events is None else cache_events[i]
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
return hidden_states
def sample(
self,
hidden_states: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
hidden_states = self.norm(hidden_states)
next_tokens = self.sampler(self.output.weight, hidden_states,
sampling_metadata)
return next_tokens
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("wqkv", "wq", "q"),
("wqkv", "wk", "k"),
("wqkv", "wv", "v"),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)