mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 17:45:19 +08:00
Mixtral 8x7B support (#2011)
Co-authored-by: Pierre Stock <p@mistral.ai> Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
This commit is contained in:
parent
2e8fc0d4c3
commit
b5f882cc98
@ -60,6 +60,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
|
||||
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
|
||||
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
|
||||
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
|
||||
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
|
||||
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
||||
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
||||
- Phi-1.5 (`microsoft/phi-1_5`, etc.)
|
||||
|
||||
@ -33,6 +33,7 @@ _MODEL_REGISTRY = {
|
||||
"LlamaForCausalLM": LlamaForCausalLM,
|
||||
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
|
||||
"MistralForCausalLM": MistralForCausalLM,
|
||||
"MixtralForCausalLM": MixtralForCausalLM,
|
||||
# transformers's mpt class has lower case
|
||||
"MptForCausalLM": MPTForCausalLM,
|
||||
"MPTForCausalLM": MPTForCausalLM,
|
||||
|
||||
@ -10,6 +10,7 @@ from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
|
||||
from vllm.model_executor.models.internlm import InternLMForCausalLM
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.models.mistral import MistralForCausalLM
|
||||
from vllm.model_executor.models.mixtral import MixtralForCausalLM
|
||||
from vllm.model_executor.models.mpt import MPTForCausalLM
|
||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
from vllm.model_executor.models.phi_1_5 import PhiForCausalLM
|
||||
@ -35,5 +36,6 @@ __all__ = [
|
||||
"PhiForCausalLM",
|
||||
"QWenLMHeadModel",
|
||||
"MistralForCausalLM",
|
||||
"MixtralForCausalLM",
|
||||
"YiForCausalLM",
|
||||
]
|
||||
|
||||
534
vllm/model_executor/models/mixtral.py
Normal file
534
vllm/model_executor/models/mixtral.py
Normal file
@ -0,0 +1,534 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Mixtral model."""
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch import nn
|
||||
from transformers import MistralConfig
|
||||
|
||||
try:
|
||||
import megablocks.ops as ops
|
||||
except ImportError:
|
||||
print("MegaBlocks not found, please see "
|
||||
"https://github.com/stanford-futuredata/megablocks/. "
|
||||
"Note that MegaBlocks depends on mosaicml-turbo, which only "
|
||||
"supports python 3.10.")
|
||||
try:
|
||||
import stk
|
||||
except ImportError:
|
||||
print(
|
||||
"STK not found: please see https://github.com/stanford-futuredata/stk")
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.communication_op import (
|
||||
tensor_model_parallel_all_reduce)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
|
||||
return x.view(1) if len(x.size()) == 0 else x
|
||||
|
||||
|
||||
class MixtralAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
max_position: int = 4096 * 32,
|
||||
rope_theta: float = 10000,
|
||||
sliding_window: Optional[int] = None) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
self.wqkv = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
)
|
||||
self.wo = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position,
|
||||
base=int(self.rope_theta),
|
||||
is_neox_style=False, # weights not in HF format
|
||||
)
|
||||
self.attn = PagedAttention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
sliding_window=self.sliding_window,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.wqkv(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
|
||||
cache_event)
|
||||
output, _ = self.wo(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class BlockSparseMoE(nn.Module):
|
||||
"""
|
||||
Built on the paper and library Megablocks as described in
|
||||
https://arxiv.org/abs/2211.15841. This implementation is
|
||||
strictly equivalent to standard MoE with full capacity (no
|
||||
dropped tokens). It's faster since it formulates MoE operations
|
||||
in terms of block-sparse operations to accomodate imbalanced
|
||||
assignments of tokens to experts, whereas standard MoE either
|
||||
(1) drop tokens at the cost of reduced performance or (2) set
|
||||
capacity factor to number of experts and thus waste computation
|
||||
and memory on padding.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim: int, ffn_dim: int, num_experts: int,
|
||||
top_k: int):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_dim
|
||||
self.ffn_dim = ffn_dim
|
||||
self.num_experts = num_experts
|
||||
self.top_k = top_k
|
||||
|
||||
# gating
|
||||
self.gate = nn.Linear(self.hidden_dim,
|
||||
self.num_experts,
|
||||
bias=False,
|
||||
device=torch.cuda.current_device())
|
||||
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
assert self.ffn_dim % tp_size == 0
|
||||
self.ffn_dim_per_partition = self.ffn_dim // tp_size
|
||||
# merged expert weights, all of size (ffn_dim * n_experts, model_dim)
|
||||
self.w1 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w1, {"weight_loader": self.moe_weight_loader})
|
||||
self.w2 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w2, {"weight_loader": self.moe_weight_loader})
|
||||
self.w3 = nn.Parameter(
|
||||
torch.empty(self.ffn_dim_per_partition * self.num_experts,
|
||||
self.hidden_dim,
|
||||
device=torch.cuda.current_device()))
|
||||
set_weight_attrs(self.w3, {"weight_loader": self.moe_weight_loader})
|
||||
|
||||
# Calculate the number of bits needed to represent the expert indices
|
||||
# so that we can pass it to radix sort.
|
||||
self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
|
||||
self.blocking = 128
|
||||
self.quantize_scatter_num_bits = -1
|
||||
|
||||
# Calculate the number of bits needed to represent the column indices
|
||||
# in the intermediate sparse matrix.
|
||||
max_column_index = (self.ffn_dim * self.num_experts) // self.blocking
|
||||
self.transpose_sort_end_bit = max(
|
||||
int(np.ceil(np.log2(max_column_index))), 1)
|
||||
|
||||
def moe_weight_loader(self, param: nn.Parameter,
|
||||
loaded_weight: torch.Tensor) -> None:
|
||||
"""
|
||||
Load the weights for the MoE linear layer.
|
||||
"""
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
shard_size = self.ffn_dim_per_partition
|
||||
loaded_weight = loaded_weight.view(self.num_experts, self.ffn_dim, -1)
|
||||
loaded_weight = loaded_weight[:, shard_size * tp_rank:shard_size *
|
||||
(tp_rank + 1)]
|
||||
loaded_weight = loaded_weight.reshape_as(param)
|
||||
param.data.copy_(loaded_weight)
|
||||
|
||||
def sparse_transpose(
|
||||
self, size: int, row_indices,
|
||||
column_indices) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
block_columns = size[1] // self.blocking
|
||||
|
||||
# Sort row indices by column indices to get the transposed matrix's
|
||||
# column indices.
|
||||
#
|
||||
# NOTE: Our sort operation uses the same width indices as the input
|
||||
# values. To avoid overflow when we have large activation matrices
|
||||
# we cast to 32-bit before sorting.
|
||||
_, gather_indices = ops.sort(column_indices.int(),
|
||||
self.transpose_sort_end_bit)
|
||||
|
||||
# There are a constant number of blocks in every row of the sparse
|
||||
# matrix. A blocks offset is:
|
||||
#
|
||||
# row_index * blocks_per_row + column_index % blocks_per_row
|
||||
#
|
||||
# Once we have the block offsets ordered for transposition we can
|
||||
# divide by blocks_per_row to get the transposed column indices.
|
||||
column_indices_t = row_indices.gather(0, gather_indices.long())
|
||||
block_offsets_t = gather_indices.int()
|
||||
|
||||
zero = torch.zeros((1, ), dtype=torch.int32, device=row_indices.device)
|
||||
nnz_per_column = ops.histogram(column_indices, block_columns)
|
||||
nnz_per_column = ops.inclusive_cumsum(nnz_per_column, 0)
|
||||
offsets_t = torch.cat([zero, nnz_per_column])
|
||||
return column_indices_t, offsets_t, block_offsets_t
|
||||
|
||||
def topology(self, x: torch.Tensor,
|
||||
padded_bins: torch.Tensor) -> stk.Matrix:
|
||||
padded_tokens, _ = x.size()
|
||||
assert padded_tokens % self.blocking == 0
|
||||
assert self.ffn_dim_per_partition % self.blocking == 0
|
||||
|
||||
# Offsets for the sparse matrix. All rows have the
|
||||
# same number of nonzero blocks dictated by the
|
||||
# dimensionality of a single expert.
|
||||
block_rows = padded_tokens // self.blocking
|
||||
blocks_per_row = self.ffn_dim_per_partition // self.blocking
|
||||
offsets = torch.arange(
|
||||
0,
|
||||
block_rows * blocks_per_row + 1,
|
||||
blocks_per_row,
|
||||
dtype=torch.int32,
|
||||
device=x.device,
|
||||
)
|
||||
|
||||
# Indices for the sparse matrix. The indices for
|
||||
# the intermediate matrix are dynamic depending
|
||||
# on the mapping of tokens to experts.
|
||||
column_indices = ops.topology(padded_bins, self.blocking, block_rows,
|
||||
blocks_per_row)
|
||||
|
||||
# TODO(tgale): This is unused. Remove the need for this in stk.
|
||||
# For now, use meta init to save the device memory.
|
||||
data = torch.empty(
|
||||
column_indices.numel(),
|
||||
self.blocking,
|
||||
self.blocking,
|
||||
dtype=x.dtype,
|
||||
device="meta",
|
||||
)
|
||||
shape = (padded_tokens, self.ffn_dim_per_partition * self.num_experts)
|
||||
row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
|
||||
column_indices_t, offsets_t, block_offsets_t = self.sparse_transpose(
|
||||
shape, row_indices, column_indices)
|
||||
return stk.Matrix(
|
||||
shape,
|
||||
data,
|
||||
row_indices,
|
||||
column_indices,
|
||||
offsets,
|
||||
column_indices_t,
|
||||
offsets_t,
|
||||
block_offsets_t,
|
||||
)
|
||||
|
||||
def indices_and_padded_bins(
|
||||
self, selected_experts: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
|
||||
torch.Tensor]:
|
||||
# Sort the expert ids to produce the scatter/gather
|
||||
# indices for the permutation.
|
||||
selected_experts = selected_experts.int()
|
||||
bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit)
|
||||
|
||||
# Histogram the expert ids to identify the number of
|
||||
# tokens routed to each expert.
|
||||
tokens_per_expert = ops.histogram(selected_experts, self.num_experts)
|
||||
|
||||
# Round the token counts up to the block size used in
|
||||
# the matrix muliplications. Caculate the starting
|
||||
# position of each bin.
|
||||
padded_tokens_per_expert = ops.round_up(tokens_per_expert,
|
||||
self.blocking)
|
||||
padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
|
||||
padded_bins = promote_scalar(padded_bins)
|
||||
|
||||
# Calculate the bin bounds for the sorted tokens.
|
||||
bins = ops.inclusive_cumsum(tokens_per_expert, 0)
|
||||
bins = promote_scalar(bins)
|
||||
return indices, bin_ids, bins, padded_bins, tokens_per_expert
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
x: (sequence_length, model_dim)
|
||||
gate_logits: (sequence_length, n_experts)
|
||||
"""
|
||||
# optional reshape
|
||||
input_shape = x.shape
|
||||
x = x.view(-1, input_shape[-1])
|
||||
|
||||
# gate_logits: (sequence_length, n_experts)
|
||||
gate_logits = self.gate(x)
|
||||
# all_probs: (sequence_length, n_experts) and upcast for softmax
|
||||
all_probs = F.softmax(gate_logits, dim=1, dtype=torch.float)
|
||||
# weights, selected_experts: (sequence_length, top-k)
|
||||
weights, selected_experts = torch.topk(all_probs, self.top_k, dim=-1)
|
||||
weights /= weights.sum(dim=-1, keepdim=True)
|
||||
weights = weights.flatten().to(x.dtype)
|
||||
selected_experts = selected_experts.flatten()
|
||||
|
||||
(indices, bin_ids, bins, padded_bins,
|
||||
_) = self.indices_and_padded_bins(selected_experts)
|
||||
|
||||
# Permute tokens and pad to prepare expert computation
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins,
|
||||
self.top_k)
|
||||
|
||||
# Create the sparse matrix topology
|
||||
with torch.no_grad():
|
||||
topo = self.topology(x, padded_bins)
|
||||
|
||||
# Perform the expert computation
|
||||
# First Dense x Dense -> Sparse for w1 and w3,
|
||||
# (top_k * sequence_length + padding, ffn_dim * n_experts)
|
||||
x = stk.Matrix(
|
||||
topo.size(),
|
||||
F.silu(stk.ops.sdd(x, self.w1.t(), topo).data) *
|
||||
stk.ops.sdd(x, self.w3.t(), topo).data,
|
||||
topo.row_indices,
|
||||
topo.column_indices,
|
||||
topo.offsets,
|
||||
topo.column_indices_t,
|
||||
topo.offsets_t,
|
||||
topo.block_offsets_t,
|
||||
)
|
||||
|
||||
# Then Sparse x Dense -> Dense for w2
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = stk.ops.dsd(x, self.w2)
|
||||
|
||||
x = tensor_model_parallel_all_reduce(x)
|
||||
|
||||
# Permute back and remove padding
|
||||
# (top_k * sequence_length, model_dim)
|
||||
x = ops.padded_scatter(
|
||||
x,
|
||||
indices,
|
||||
bin_ids,
|
||||
weights,
|
||||
bins,
|
||||
padded_bins,
|
||||
self.top_k,
|
||||
self.quantize_scatter_num_bits,
|
||||
)
|
||||
return x.view(*input_shape)
|
||||
|
||||
|
||||
class MixtralDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MistralConfig,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Requires transformers > 4.32.0
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
self.attention = MixtralAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
sliding_window=config.sliding_window)
|
||||
self.block_sparse_moe = BlockSparseMoE(
|
||||
hidden_dim=self.hidden_size,
|
||||
ffn_dim=config.intermediate_size,
|
||||
num_experts=config.num_local_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
)
|
||||
self.attention_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
x: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
r = self.attention(
|
||||
positions=positions,
|
||||
hidden_states=self.attention_norm(x),
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
h = x + r
|
||||
r = self.block_sparse_moe(self.ffn_norm(h))
|
||||
out = h + r
|
||||
return out
|
||||
|
||||
|
||||
class MixtralForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MistralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
assert linear_method is None
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.tok_embeddings: Union[nn.Embedding, None] = None
|
||||
self.layers: nn.ModuleList = None
|
||||
self.output: Union[nn.Linear, None] = None
|
||||
self.sampler: Union[Sampler, None] = None
|
||||
self.tok_embeddings = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
self.layers = nn.ModuleList([
|
||||
MixtralDecoderLayer(config)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> SamplerOutput:
|
||||
hidden_states = self.tok_embeddings(input_ids)
|
||||
|
||||
# forward
|
||||
for i in range(len(self.layers)):
|
||||
cache_event = None if cache_events is None else cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> SamplerOutput:
|
||||
hidden_states = self.norm(hidden_states)
|
||||
next_tokens = self.sampler(self.output.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("wqkv", "wq", "q"),
|
||||
("wqkv", "wk", "k"),
|
||||
("wqkv", "wv", "v"),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
param = params_dict[name.replace(weight_name, param_name)]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
Loading…
x
Reference in New Issue
Block a user