mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-29 14:17:14 +08:00
[Misc] add litellm integration (#18320)
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
parent
4fb349f66a
commit
b6a6e7a529
@ -10,6 +10,7 @@ chatbox
|
||||
dify
|
||||
dstack
|
||||
helm
|
||||
litellm
|
||||
lobe-chat
|
||||
lws
|
||||
modal
|
||||
|
||||
75
docs/source/deployment/frameworks/litellm.md
Normal file
75
docs/source/deployment/frameworks/litellm.md
Normal file
@ -0,0 +1,75 @@
|
||||
(deployment-litellm)=
|
||||
|
||||
# LiteLLM
|
||||
|
||||
[LiteLLM](https://github.com/BerriAI/litellm) call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]
|
||||
|
||||
LiteLLM manages:
|
||||
|
||||
- Translate inputs to provider's `completion`, `embedding`, and `image_generation` endpoints
|
||||
- [Consistent output](https://docs.litellm.ai/docs/completion/output), text responses will always be available at `['choices'][0]['message']['content']`
|
||||
- Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - [Router](https://docs.litellm.ai/docs/routing)
|
||||
- Set Budgets & Rate limits per project, api key, model [LiteLLM Proxy Server (LLM Gateway)](https://docs.litellm.ai/docs/simple_proxy)
|
||||
|
||||
And LiteLLM supports all models on VLLM.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Setup vLLM and litellm environment
|
||||
|
||||
```console
|
||||
pip install vllm litellm
|
||||
```
|
||||
|
||||
## Deploy
|
||||
|
||||
### Chat completion
|
||||
|
||||
- Start the vLLM server with the supported chat completion model, e.g.
|
||||
|
||||
```console
|
||||
vllm serve qwen/Qwen1.5-0.5B-Chat
|
||||
```
|
||||
|
||||
- Call it with litellm:
|
||||
|
||||
```python
|
||||
import litellm
|
||||
|
||||
messages = [{ "content": "Hello, how are you?","role": "user"}]
|
||||
|
||||
# hosted_vllm is prefix key word and necessary
|
||||
response = litellm.completion(
|
||||
model="hosted_vllm/qwen/Qwen1.5-0.5B-Chat", # pass the vllm model name
|
||||
messages=messages,
|
||||
api_base="http://{your-vllm-server-host}:{your-vllm-server-port}/v1",
|
||||
temperature=0.2,
|
||||
max_tokens=80)
|
||||
|
||||
print(response)
|
||||
```
|
||||
|
||||
### Embeddings
|
||||
|
||||
- Start the vLLM server with the supported embedding model, e.g.
|
||||
|
||||
```console
|
||||
vllm serve BAAI/bge-base-en-v1.5
|
||||
```
|
||||
|
||||
- Call it with litellm:
|
||||
|
||||
```python
|
||||
from litellm import embedding
|
||||
import os
|
||||
|
||||
os.environ["HOSTED_VLLM_API_BASE"] = "http://{your-vllm-server-host}:{your-vllm-server-port}/v1"
|
||||
|
||||
# hosted_vllm is prefix key word and necessary
|
||||
# pass the vllm model name
|
||||
embedding = embedding(model="hosted_vllm/BAAI/bge-base-en-v1.5", input=["Hello world"])
|
||||
|
||||
print(embedding)
|
||||
```
|
||||
|
||||
For details, see the tutorial [Using vLLM in LiteLLM](https://docs.litellm.ai/docs/providers/vllm).
|
||||
Loading…
x
Reference in New Issue
Block a user