mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-25 21:35:19 +08:00
[V0 Deprecation] Remove V0 sampling metadata (#25345)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai> Signed-off-by: yewentao256 <zhyanwentao@126.com>
This commit is contained in:
parent
791089df20
commit
b81364a7cd
@ -9,7 +9,6 @@ from vllm.model_executor.models.llava import (LlavaDummyInputsBuilder,
|
||||
LlavaForConditionalGeneration,
|
||||
LlavaMultiModalProcessor,
|
||||
LlavaProcessingInfo)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
|
||||
|
||||
@ -18,11 +17,10 @@ from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
dummy_inputs=LlavaDummyInputsBuilder)
|
||||
class MyLlava(LlavaForConditionalGeneration):
|
||||
|
||||
def compute_logits(
|
||||
self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
|
||||
def compute_logits(self,
|
||||
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
# this dummy model always predicts the first token
|
||||
logits = super().compute_logits(hidden_states, sampling_metadata)
|
||||
logits = super().compute_logits(hidden_states)
|
||||
if logits is not None:
|
||||
logits.zero_()
|
||||
logits[:, 0] += 1.0
|
||||
|
||||
@ -6,16 +6,14 @@ from typing import Optional
|
||||
import torch
|
||||
|
||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
|
||||
|
||||
class MyOPTForCausalLM(OPTForCausalLM):
|
||||
|
||||
def compute_logits(
|
||||
self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
|
||||
def compute_logits(self,
|
||||
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
# this dummy model always predicts the first token
|
||||
logits = super().compute_logits(hidden_states, sampling_metadata)
|
||||
logits = super().compute_logits(hidden_states)
|
||||
if logits is not None:
|
||||
logits.zero_()
|
||||
logits[:, 0] += 1.0
|
||||
|
||||
@ -3,11 +3,9 @@
|
||||
|
||||
from vllm.model_executor.parameter import (BasevLLMParameter,
|
||||
PackedvLLMParameter)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.utils import set_random_seed
|
||||
|
||||
__all__ = [
|
||||
"SamplingMetadata",
|
||||
"set_random_seed",
|
||||
"BasevLLMParameter",
|
||||
"PackedvLLMParameter",
|
||||
|
||||
@ -10,7 +10,6 @@ from vllm.distributed import (tensor_model_parallel_all_gather,
|
||||
from vllm.model_executor.custom_op import CustomOp
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
|
||||
@ -50,7 +49,6 @@ class LogitsProcessor(CustomOp):
|
||||
self,
|
||||
lm_head: VocabParallelEmbedding,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: Optional[SamplingMetadata] = None,
|
||||
embedding_bias: Optional[torch.Tensor] = None,
|
||||
) -> Optional[torch.Tensor]:
|
||||
if self.logits_as_input:
|
||||
|
||||
@ -48,7 +48,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -566,10 +565,8 @@ class ApertusForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -399,11 +399,10 @@ class ArceeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
inputs_embeds=inputs_embeds)
|
||||
return model_output
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata) -> Optional[torch.Tensor]:
|
||||
def compute_logits(self,
|
||||
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
# Compute final logits from hidden states (last pipeline rank only)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
@ -30,7 +30,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sequence import IntermediateTensors
|
||||
@ -456,10 +455,8 @@ class ArcticForCausalLM(nn.Module, SupportsPP, SupportsQuant):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -19,7 +19,6 @@ from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -644,10 +643,8 @@ class AriaForConditionalGeneration(nn.Module, SupportsMultiModal):
|
||||
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
|
||||
@ -16,7 +16,6 @@ from transformers.models.got_ocr2.image_processing_got_ocr2 import (
|
||||
get_optimal_tiled_canvas)
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargsItems
|
||||
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
|
||||
@ -464,7 +463,5 @@ class AyaVisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
@ -46,7 +46,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, row_parallel_weight_loader)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP, SupportsQuant
|
||||
@ -421,10 +420,8 @@ class BaiChuanBaseForCausalLM(nn.Module, SupportsLoRA, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -51,7 +51,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -623,10 +622,8 @@ class BailingMoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -34,7 +34,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
|
||||
MambaCacheParams)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import LayerBlockType
|
||||
|
||||
@ -571,10 +570,8 @@ class BambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -12,7 +12,6 @@ from transformers import (BatchFeature, Blip2Config, Blip2QFormerConfig,
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -704,10 +703,8 @@ class Blip2ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP, SupportsQuant
|
||||
@ -355,10 +354,8 @@ class BloomForCausalLM(nn.Module, SupportsPP, SupportsQuant):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -28,7 +28,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, row_parallel_weight_loader)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
@ -1046,10 +1045,8 @@ class ChameleonForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
|
||||
# Disallow image tokens which does not include special
|
||||
# begin-image and end-image tokens
|
||||
|
||||
@ -27,7 +27,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs import ChatGLMConfig
|
||||
|
||||
@ -437,10 +436,8 @@ class ChatGLMBaseModel(nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
|
||||
@ -21,7 +21,6 @@ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.quantization.awq import AWQConfig
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargsItems
|
||||
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
|
||||
@ -478,7 +477,5 @@ class Cohere2VisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
@ -46,7 +46,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name,
|
||||
row_parallel_weight_loader)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sequence import IntermediateTensors
|
||||
@ -448,15 +447,14 @@ class CohereForCausalLM(nn.Module, SupportsLoRA, SupportsPP, SupportsQuant):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
is_not_lora = hasattr(self.model.embed_tokens, 'weight')
|
||||
if is_not_lora:
|
||||
logits = self.logits_processor(self.model.embed_tokens,
|
||||
hidden_states, sampling_metadata)
|
||||
hidden_states)
|
||||
else:
|
||||
logits = self.logits_processor(self.model.embed_tokens.base_layer,
|
||||
hidden_states, sampling_metadata)
|
||||
hidden_states)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@ -24,7 +24,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -462,10 +461,8 @@ class DbrxForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -49,7 +49,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -488,10 +487,8 @@ class DeepseekForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -19,7 +19,6 @@ from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.models.deepseek_v2 import (DeepseekV2DecoderLayer,
|
||||
DeepseekV3ForCausalLM)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
|
||||
from .utils import AutoWeightsLoader, maybe_prefix
|
||||
|
||||
@ -222,10 +221,8 @@ class EagleDeepseekV3ForCausalLM(DeepseekV3ForCausalLM):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
|
||||
@ -15,7 +15,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .deepseek_v2 import (DeepseekV2DecoderLayer,
|
||||
@ -124,15 +123,13 @@ class DeepSeekMultiTokenPredictor(nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
||||
mtp_layer = self.layers[str(self.mtp_start_layer_idx +
|
||||
current_step_idx)]
|
||||
logits = self.logits_processor(mtp_layer.shared_head.head,
|
||||
mtp_layer.shared_head(hidden_states),
|
||||
sampling_metadata)
|
||||
mtp_layer.shared_head(hidden_states))
|
||||
return logits
|
||||
|
||||
|
||||
@ -161,11 +158,9 @@ class DeepSeekMTP(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.model.compute_logits(hidden_states, sampling_metadata,
|
||||
spec_step_idx)
|
||||
return self.model.compute_logits(hidden_states, spec_step_idx)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -56,7 +56,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import cdiv, direct_register_custom_op
|
||||
@ -914,10 +913,8 @@ class DeepseekV2ForCausalLM(nn.Module, SupportsPP, MixtureOfExperts,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -15,7 +15,6 @@ from transformers import BatchFeature
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
|
||||
from vllm.model_executor.models.transformers import replace_linear_class
|
||||
@ -647,10 +646,8 @@ class DeepseekVLV2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -52,7 +52,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -534,10 +533,8 @@ class Dots1ForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -49,7 +49,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -591,10 +590,8 @@ class Ernie4_5_MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -39,7 +39,6 @@ from vllm.config import VllmConfig
|
||||
from vllm.distributed import parallel_state
|
||||
from vllm.distributed import utils as dist_utils
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.activation import QuickGELU
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
@ -1292,11 +1291,9 @@ class Ernie4_5_VLMoeForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
"""compute logits"""
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def _vision_forward(
|
||||
self,
|
||||
|
||||
@ -48,7 +48,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .ernie45_moe import Ernie4_5_MoeMLP
|
||||
@ -587,10 +586,8 @@ class Ernie4_5_VLMoeForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -36,7 +36,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -138,12 +137,10 @@ class ErnieMultiTokenPredictor(nn.Module):
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
lm_head: ParallelLMHead,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
self.layers[str(self.mtp_start_layer_idx + spec_step_idx)]
|
||||
logits = self.logits_processor(lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
|
||||
@ -180,11 +177,10 @@ class ErnieMTP(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.model.compute_logits(hidden_states, self.lm_head,
|
||||
sampling_metadata, spec_step_idx)
|
||||
spec_step_idx)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -49,7 +49,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -534,10 +533,8 @@ class ExaoneForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -45,7 +45,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -517,10 +516,8 @@ class Exaone4ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -46,7 +46,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs import RWConfig
|
||||
|
||||
@ -496,10 +495,8 @@ class FalconForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -33,7 +33,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
|
||||
MambaCacheParams)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import HasInnerState, IsHybrid, SupportsLoRA, SupportsPP
|
||||
@ -675,10 +674,8 @@ class FalconH1ForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@ -29,7 +29,6 @@ from transformers import (BatchFeature, FuyuConfig, FuyuImageProcessor,
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.model_executor.layers.linear import ColumnParallelLinear
|
||||
from vllm.model_executor.models.persimmon import PersimmonForCausalLM
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -389,10 +388,9 @@ class FuyuForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.language_model.logits_processor(
|
||||
self.language_model.lm_head, hidden_states, sampling_metadata)
|
||||
self.language_model.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -412,10 +411,8 @@ class GemmaForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -409,10 +408,8 @@ class Gemma2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from ...attention.layers.encoder_only_attention import EncoderOnlyAttention
|
||||
@ -542,10 +541,8 @@ class Gemma3ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -14,7 +14,6 @@ from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.layernorm import GemmaRMSNorm
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -704,10 +703,8 @@ class Gemma3ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -43,7 +43,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsQuant
|
||||
@ -814,10 +813,8 @@ class Gemma3nForCausalLM(nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: Optional[SamplingMetadata],
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.model.embed_tokens, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -25,7 +25,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.models.gemma3n import Gemma3nForCausalLM
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.models.whisper import ISO639_1_SUPPORTED_LANGS
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -685,10 +684,8 @@ class Gemma3nForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -40,7 +40,6 @@ from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -289,10 +288,8 @@ class Glm4ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -52,7 +52,6 @@ from vllm.distributed import (get_tensor_model_parallel_world_size,
|
||||
parallel_state)
|
||||
from vllm.distributed import utils as dist_utils
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
@ -1654,10 +1653,8 @@ class Glm4vForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -51,7 +51,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -703,10 +702,8 @@ class Glm4MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -38,7 +38,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .glm4_moe import Glm4MoeDecoderLayer, get_spec_layer_idx_from_weight_name
|
||||
@ -155,15 +154,13 @@ class Glm4MoeMultiTokenPredictor(nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
||||
mtp_layer = self.layers[str(self.mtp_start_layer_idx +
|
||||
current_step_idx)]
|
||||
logits = self.logits_processor(mtp_layer.shared_head.head,
|
||||
mtp_layer.shared_head(hidden_states),
|
||||
sampling_metadata)
|
||||
mtp_layer.shared_head(hidden_states))
|
||||
return logits
|
||||
|
||||
|
||||
@ -192,11 +189,9 @@ class Glm4MoeMTP(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.model.compute_logits(hidden_states, sampling_metadata,
|
||||
spec_step_idx)
|
||||
return self.model.compute_logits(hidden_states, spec_step_idx)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from ..layers.pooler import DispatchPooler, Pooler
|
||||
@ -307,10 +306,8 @@ class GPT2LMHeadModel(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -329,10 +328,8 @@ class GPTBigCodeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -329,10 +328,9 @@ class GPTJForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata, self.lm_head.bias)
|
||||
self.lm_head.bias)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -40,7 +40,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -321,10 +320,8 @@ class GPTNeoXForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.embed_out, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.embed_out, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -24,7 +24,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import cdiv
|
||||
|
||||
@ -670,10 +669,8 @@ class GptOssForCausalLM(nn.Module, SupportsPP):
|
||||
return self.model(input_ids, positions, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -48,7 +48,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -463,11 +462,9 @@ class GraniteForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
inputs_embeds)
|
||||
return model_output
|
||||
|
||||
def compute_logits(
|
||||
self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self,
|
||||
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
|
||||
@ -37,7 +37,6 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -776,12 +775,8 @@ class GraniteSpeechForConditionalGeneration(
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(
|
||||
hidden_states,
|
||||
sampling_metadata,
|
||||
)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(
|
||||
self,
|
||||
|
||||
@ -48,7 +48,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -511,11 +510,9 @@ class GraniteMoeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self,
|
||||
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
|
||||
@ -32,7 +32,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
|
||||
MambaCacheParams)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import LayerBlockType
|
||||
|
||||
@ -672,10 +671,8 @@ class GraniteMoeHybridForCausalLM(nn.Module, HasInnerState, SupportsLoRA,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -25,7 +25,6 @@ from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .granitemoe import GraniteMoeAttention, GraniteMoeModel, GraniteMoeMoE
|
||||
@ -311,11 +310,9 @@ class GraniteMoeSharedForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self,
|
||||
hidden_states: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
|
||||
@ -46,7 +46,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -528,10 +527,8 @@ class Grok1ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -54,7 +54,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP
|
||||
@ -1004,10 +1003,8 @@ class HunYuanV1Base(nn.Module, SupportsLoRA, SupportsPP, MixtureOfExperts):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
|
||||
@ -31,7 +31,6 @@ from transformers.modeling_utils import no_init_weights
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.inputs import InputProcessingContext
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.cache import BaseMultiModalProcessorCache
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
@ -962,10 +961,8 @@ class HCXVisionForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(
|
||||
self,
|
||||
|
||||
@ -31,7 +31,6 @@ from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -738,10 +737,8 @@ class Idefics3ForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -13,11 +13,9 @@ from vllm.utils import supports_kw
|
||||
if TYPE_CHECKING:
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.model_executor.layers.pooler import Pooler
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
else:
|
||||
VllmConfig = Any
|
||||
Pooler = Any
|
||||
SamplingMetadata = Any
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -100,7 +98,6 @@ class VllmModelForTextGeneration(VllmModel[T], Protocol[T]):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: T,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[T]:
|
||||
"""Return `None` if TP rank > 0."""
|
||||
...
|
||||
|
||||
@ -29,7 +29,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -358,10 +357,8 @@ class InternLM2ForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.output, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.output, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -21,7 +21,6 @@ from vllm.config import VllmConfig
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.models.interns1_vit import InternS1VisionModel
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems, NestedTensors)
|
||||
@ -812,10 +811,8 @@ class InternS1ForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -25,7 +25,6 @@ from vllm.model_executor.layers.quantization.awq import AWQConfig
|
||||
from vllm.model_executor.models.intern_vit import (InternVisionModel,
|
||||
InternVisionPatchModel)
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.image import convert_image_mode
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
@ -1399,10 +1398,8 @@ class InternVLChatModel(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -42,7 +42,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs import JAISConfig
|
||||
|
||||
@ -332,10 +331,8 @@ class JAISLMHeadModel(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -32,7 +32,6 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.llama import LlamaMLP as JambaMLP
|
||||
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
|
||||
MambaCacheParams)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import LayerBlockType
|
||||
|
||||
@ -581,10 +580,8 @@ class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -21,7 +21,6 @@ from vllm.attention.layer import check_upstream_fa_availability
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
@ -1556,10 +1555,8 @@ class BaseKeyeModule(nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -67,7 +67,6 @@ from vllm.model_executor.models.interfaces import (SupportsMultiModal,
|
||||
SupportsPP)
|
||||
from vllm.model_executor.models.moonvit import MoonVitPretrainedModel
|
||||
from vllm.model_executor.models.utils import merge_multimodal_embeddings
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems, NestedTensors)
|
||||
@ -484,10 +483,8 @@ class KimiVLForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
**kwargs) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata, **kwargs)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states, **kwargs)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
|
||||
@ -27,7 +27,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import (HasInnerState, IsHybrid, SupportsLoRA, SupportsPP,
|
||||
@ -542,10 +541,8 @@ class Lfm2ForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -48,7 +48,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsEagle3, SupportsLoRA, SupportsPP
|
||||
@ -601,10 +600,8 @@ class LlamaForCausalLM(nn.Module, SupportsLoRA, SupportsPP, SupportsEagle3):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -21,7 +21,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.llama import (LlamaDecoderLayer,
|
||||
LlamaForCausalLM)
|
||||
from vllm.v1.sample.metadata import SamplingMetadata
|
||||
|
||||
from .utils import AutoWeightsLoader, maybe_prefix
|
||||
|
||||
@ -244,10 +243,8 @@ class Eagle3LlamaForCausalLM(LlamaForCausalLM):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
if self.draft_id_to_target_id is None:
|
||||
assert logits.shape[1] == self.config.vocab_size, \
|
||||
"Expected logits to have shape " \
|
||||
|
||||
@ -20,7 +20,6 @@ from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.cache import BaseMultiModalProcessorCache
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
@ -760,10 +759,8 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -13,7 +13,6 @@ from transformers.models.llava_next.modeling_llava_next import (
|
||||
get_anyres_image_grid_shape, unpad_image)
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import MultiModalFieldConfig
|
||||
from vllm.multimodal.parse import ImageSize
|
||||
@ -563,10 +562,8 @@ model_executor.models.llava_next.LlavaNextProcessingInfo.get_num_image_tokens].
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -13,7 +13,6 @@ from transformers import (BatchFeature, LlavaNextVideoConfig,
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.models.clip import CLIPVisionModel
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -464,10 +463,8 @@ class LlavaNextVideoForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -14,7 +14,6 @@ from transformers.models.llava_onevision.modeling_llava_onevision import (
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -934,10 +933,8 @@ class LlavaOnevisionForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -26,7 +26,6 @@ from vllm.model_executor.models.interfaces import (HasInnerState,
|
||||
IsAttentionFree, SupportsPP)
|
||||
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
|
||||
MambaCacheParams)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import LayerBlockType
|
||||
|
||||
@ -299,10 +298,8 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree, SupportsPP):
|
||||
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
|
||||
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -30,7 +30,6 @@ from vllm.model_executor.models.interfaces import (HasInnerState,
|
||||
IsAttentionFree)
|
||||
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
|
||||
MambaCacheParams)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import LayerBlockType
|
||||
|
||||
@ -335,10 +334,8 @@ class Mamba2ForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
|
||||
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
|
||||
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -104,12 +104,11 @@ class Medusa(nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: list[torch.Tensor],
|
||||
sampling_metadata,
|
||||
) -> list[torch.Tensor]:
|
||||
logits_lst: list[torch.Tensor] = []
|
||||
|
||||
for hs, lm_head in zip(hidden_states, self.lm_heads):
|
||||
_logits = self.logits_processor(lm_head, hs, sampling_metadata)
|
||||
_logits = self.logits_processor(lm_head, hs)
|
||||
|
||||
if _logits is None:
|
||||
# _logits should only be None on rank > 0, in which case
|
||||
|
||||
@ -42,7 +42,6 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -784,9 +783,8 @@ class MiDashengLMModel(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.decoder.compute_logits(hidden_states, sampling_metadata)
|
||||
return self.decoder.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM, Qwen2Model
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .utils import PPMissingLayer, is_pp_missing_parameter, maybe_prefix
|
||||
@ -183,9 +182,7 @@ class MiMoForCausalLM(Qwen2ForCausalLM, nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
hidden_states = self.model.norm(hidden_states)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
@ -34,7 +34,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.qwen2 import Qwen2DecoderLayer
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .utils import maybe_prefix
|
||||
@ -140,12 +139,10 @@ class MiMoMultiTokenPredictor(nn.Module):
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
lm_head: ParallelLMHead,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
self.mtp_layers[str(self.mtp_start_layer_idx + spec_step_idx)]
|
||||
logits = self.logits_processor(lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
|
||||
@ -178,11 +175,10 @@ class MiMoMTP(nn.Module):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.model.compute_logits(hidden_states, self.lm_head,
|
||||
sampling_metadata, spec_step_idx)
|
||||
spec_step_idx)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -51,7 +51,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sequence import IntermediateTensors
|
||||
@ -583,10 +582,8 @@ class MiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -39,7 +39,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -376,10 +375,8 @@ class EagleMiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -50,7 +50,6 @@ from vllm.model_executor.models.minicpm import MiniCPMForCausalLM
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
|
||||
from vllm.model_executor.models.qwen3 import Qwen3ForCausalLM
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems, NestedTensors)
|
||||
@ -1194,9 +1193,8 @@ class MiniCPMVBaseModel(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.llm.compute_logits(hidden_states, sampling_metadata)
|
||||
return self.llm.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.models.utils import maybe_prefix
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import HasInnerState, IsHybrid
|
||||
@ -742,10 +741,8 @@ class MiniMaxText01ForCausalLM(nn.Module, HasInnerState, IsHybrid):
|
||||
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states.float(),
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states.float())
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@ -14,7 +14,6 @@ from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import MultiModalFieldConfig
|
||||
from vllm.sequence import IntermediateTensors
|
||||
@ -420,10 +419,8 @@ class MiniMaxVL01ForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -20,7 +20,6 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.cache import BaseMultiModalProcessorCache
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
@ -606,10 +605,8 @@ class Mistral3ForConditionalGeneration(nn.Module, SupportsLoRA,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -49,7 +49,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP
|
||||
@ -594,10 +593,8 @@ class MixtralForCausalLM(nn.Module, SupportsLoRA, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.model_loader.utils import initialize_model
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems, NestedTensors)
|
||||
@ -856,10 +855,8 @@ class Llama4ForConditionalGeneration(nn.Module, SupportsMultiModal,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def separate_weights(
|
||||
self,
|
||||
|
||||
@ -26,7 +26,6 @@ from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size,
|
||||
split_tensor_along_last_dim,
|
||||
tensor_model_parallel_all_gather)
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.activation import (MulAndSilu, QuickGELU,
|
||||
SiluAndMul)
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
@ -1527,10 +1526,8 @@ class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA,
|
||||
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
|
||||
@ -25,7 +25,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -320,10 +319,8 @@ class MPTForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -37,7 +37,6 @@ from vllm.model_executor.models.utils import (flatten_bn,
|
||||
init_vllm_registered_model,
|
||||
maybe_prefix,
|
||||
merge_multimodal_embeddings)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargs, MultiModalKwargsItems,
|
||||
@ -1192,10 +1191,8 @@ class NemotronH_Nano_VL(nn.Module, HasInnerState, IsHybrid,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
adapter_dict = dict(self.mlp1.named_parameters())
|
||||
|
||||
@ -45,7 +45,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs import NemotronConfig
|
||||
|
||||
@ -498,10 +497,8 @@ class NemotronForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -54,7 +54,6 @@ from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
|
||||
from vllm.model_executor.models.utils import (
|
||||
AutoWeightsLoader, WeightsMapper, make_empty_intermediate_tensors_factory,
|
||||
make_layers, maybe_prefix)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs import NemotronHConfig
|
||||
from vllm.utils import LayerBlockType
|
||||
@ -622,10 +621,8 @@ class NemotronHForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -44,7 +44,6 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.models.llama import LlamaAttention, LlamaMLP
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import HasNoOps, SupportsLoRA, SupportsPP
|
||||
@ -468,10 +467,8 @@ class DeciLMForCausalLM(nn.Module, SupportsLoRA, SupportsPP, HasNoOps):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -26,7 +26,6 @@ from vllm.model_executor.models.internvl import (
|
||||
BaseInternVLProcessingInfo, InternVLImageEmbeddingInputs,
|
||||
InternVLImageInputs, InternVLImagePixelInputs, InternVLProcessor)
|
||||
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.image import convert_image_mode
|
||||
from vllm.multimodal.inputs import NestedTensors
|
||||
@ -632,10 +631,8 @@ class LlamaNemotronVLChatModel(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
return self.language_model.compute_logits(hidden_states)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
||||
@ -45,7 +45,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
@ -391,10 +390,8 @@ class OlmoForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -54,7 +54,6 @@ from vllm.model_executor.models.interfaces import SupportsLoRA, SupportsPP
|
||||
from vllm.model_executor.models.utils import (
|
||||
AutoWeightsLoader, extract_layer_index, is_pp_missing_parameter,
|
||||
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs import Olmo3Config
|
||||
|
||||
@ -427,10 +426,8 @@ class Olmo2ForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -471,10 +470,8 @@ class OlmoeForCausalLM(nn.Module, SupportsPP):
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -41,7 +41,6 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -399,10 +398,8 @@ class OPTForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -28,7 +28,6 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
@ -339,10 +338,8 @@ class OrionForCausalLM(nn.Module, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
@ -39,7 +39,6 @@ from vllm.model_executor.models.siglip import SiglipVisionModel
|
||||
from vllm.model_executor.models.utils import (AutoWeightsLoader, flatten_bn,
|
||||
init_vllm_registered_model,
|
||||
maybe_prefix)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
||||
MultiModalKwargsItems)
|
||||
@ -558,9 +557,8 @@ class Ovis(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.llm.compute_logits(hidden_states, sampling_metadata)
|
||||
logits = self.llm.compute_logits(hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user