mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:05:01 +08:00
[Misc] Use helper function to generate dummy messages in OpenAI MM tests (#26875)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
302ef403a2
commit
b8a4572157
@ -53,21 +53,34 @@ def base64_encoded_audio() -> dict[str, str]:
|
||||
}
|
||||
|
||||
|
||||
def dummy_messages_from_audio_url(
|
||||
audio_urls: str | list[str],
|
||||
content_text: str = "What's happening in this audio?",
|
||||
):
|
||||
if isinstance(audio_urls, str):
|
||||
audio_urls = [audio_urls]
|
||||
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*(
|
||||
{"type": "audio_url", "audio_url": {"url": audio_url}}
|
||||
for audio_url in audio_urls
|
||||
),
|
||||
{"type": "text", "text": content_text},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("audio_url", [TEST_AUDIO_URLS[0]])
|
||||
async def test_single_chat_session_audio(
|
||||
client: openai.AsyncOpenAI, model_name: str, audio_url: str
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "audio_url", "audio_url": {"url": audio_url}},
|
||||
{"type": "text", "text": "What's happening in this audio?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_audio_url(audio_url)
|
||||
|
||||
# test single completion
|
||||
chat_completion = await client.chat.completions.create(
|
||||
@ -138,20 +151,9 @@ async def test_single_chat_session_audio_base64encoded(
|
||||
audio_url: str,
|
||||
base64_encoded_audio: dict[str, str],
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "audio_url",
|
||||
"audio_url": {
|
||||
"url": f"data:audio/wav;base64,{base64_encoded_audio[audio_url]}" # noqa: E501
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "What's happening in this audio?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_audio_url(
|
||||
f"data:audio/wav;base64,{base64_encoded_audio[audio_url]}"
|
||||
)
|
||||
|
||||
# test single completion
|
||||
chat_completion = await client.chat.completions.create(
|
||||
@ -252,15 +254,7 @@ async def test_single_chat_session_input_audio(
|
||||
async def test_chat_streaming_audio(
|
||||
client: openai.AsyncOpenAI, model_name: str, audio_url: str
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "audio_url", "audio_url": {"url": audio_url}},
|
||||
{"type": "text", "text": "What's happening in this audio?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_audio_url(audio_url)
|
||||
|
||||
# test single completion
|
||||
chat_completion = await client.chat.completions.create(
|
||||
@ -365,18 +359,7 @@ async def test_chat_streaming_input_audio(
|
||||
async def test_multi_audio_input(
|
||||
client: openai.AsyncOpenAI, model_name: str, audio_urls: list[str]
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*(
|
||||
{"type": "audio_url", "audio_url": {"url": audio_url}}
|
||||
for audio_url in audio_urls
|
||||
),
|
||||
{"type": "text", "text": "What's happening in this audio?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_audio_url(audio_urls)
|
||||
|
||||
if len(audio_urls) > MAXIMUM_AUDIOS:
|
||||
with pytest.raises(openai.BadRequestError): # test multi-audio input
|
||||
|
||||
@ -55,21 +55,34 @@ def base64_encoded_video() -> dict[str, str]:
|
||||
}
|
||||
|
||||
|
||||
def dummy_messages_from_video_url(
|
||||
video_urls: str | list[str],
|
||||
content_text: str = "What's in this video?",
|
||||
):
|
||||
if isinstance(video_urls, str):
|
||||
video_urls = [video_urls]
|
||||
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*(
|
||||
{"type": "video_url", "video_url": {"url": video_url}}
|
||||
for video_url in video_urls
|
||||
),
|
||||
{"type": "text", "text": content_text},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
||||
async def test_single_chat_session_video(
|
||||
client: openai.AsyncOpenAI, model_name: str, video_url: str
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video_url", "video_url": {"url": video_url}},
|
||||
{"type": "text", "text": "What's in this video?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_video_url(video_url)
|
||||
|
||||
# test single completion
|
||||
chat_completion = await client.chat.completions.create(
|
||||
@ -137,15 +150,7 @@ async def test_error_on_invalid_video_url_type(
|
||||
async def test_single_chat_session_video_beamsearch(
|
||||
client: openai.AsyncOpenAI, model_name: str, video_url: str
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video_url", "video_url": {"url": video_url}},
|
||||
{"type": "text", "text": "What's in this video?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_video_url(video_url)
|
||||
|
||||
chat_completion = await client.chat.completions.create(
|
||||
model=model_name,
|
||||
@ -172,20 +177,9 @@ async def test_single_chat_session_video_base64encoded(
|
||||
video_url: str,
|
||||
base64_encoded_video: dict[str, str],
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video_url",
|
||||
"video_url": {
|
||||
"url": f"data:video/jpeg;base64,{base64_encoded_video[video_url]}" # noqa: E501
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "What's in this video?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_video_url(
|
||||
f"data:video/jpeg;base64,{base64_encoded_video[video_url]}"
|
||||
)
|
||||
|
||||
# test single completion
|
||||
chat_completion = await client.chat.completions.create(
|
||||
@ -231,20 +225,10 @@ async def test_single_chat_session_video_base64encoded_beamsearch(
|
||||
video_url: str,
|
||||
base64_encoded_video: dict[str, str],
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video_url",
|
||||
"video_url": {
|
||||
"url": f"data:video/jpeg;base64,{base64_encoded_video[video_url]}" # noqa: E501
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "What's in this video?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_video_url(
|
||||
f"data:video/jpeg;base64,{base64_encoded_video[video_url]}"
|
||||
)
|
||||
|
||||
chat_completion = await client.chat.completions.create(
|
||||
model=model_name,
|
||||
messages=messages,
|
||||
@ -265,15 +249,7 @@ async def test_single_chat_session_video_base64encoded_beamsearch(
|
||||
async def test_chat_streaming_video(
|
||||
client: openai.AsyncOpenAI, model_name: str, video_url: str
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "video_url", "video_url": {"url": video_url}},
|
||||
{"type": "text", "text": "What's in this video?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_video_url(video_url)
|
||||
|
||||
# test single completion
|
||||
chat_completion = await client.chat.completions.create(
|
||||
@ -318,18 +294,7 @@ async def test_chat_streaming_video(
|
||||
async def test_multi_video_input(
|
||||
client: openai.AsyncOpenAI, model_name: str, video_urls: list[str]
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*(
|
||||
{"type": "video_url", "video_url": {"url": video_url}}
|
||||
for video_url in video_urls
|
||||
),
|
||||
{"type": "text", "text": "What's in this video?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_video_url(video_urls)
|
||||
|
||||
if len(video_urls) > MAXIMUM_VIDEOS:
|
||||
with pytest.raises(openai.BadRequestError): # test multi-video input
|
||||
|
||||
@ -78,6 +78,27 @@ def base64_encoded_image(local_asset_server) -> dict[str, str]:
|
||||
}
|
||||
|
||||
|
||||
def dummy_messages_from_image_url(
|
||||
image_urls: str | list[str],
|
||||
content_text: str = "What's in this image?",
|
||||
):
|
||||
if isinstance(image_urls, str):
|
||||
image_urls = [image_urls]
|
||||
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*(
|
||||
{"type": "image_url", "image_url": {"url": image_url}}
|
||||
for image_url in image_urls
|
||||
),
|
||||
{"type": "text", "text": content_text},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
def get_hf_prompt_tokens(model_name, content, image_url):
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
model_name, trust_remote_code=True, num_crops=4
|
||||
@ -107,15 +128,7 @@ async def test_single_chat_session_image(
|
||||
client: openai.AsyncOpenAI, model_name: str, image_url: str
|
||||
):
|
||||
content_text = "What's in this image?"
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image_url", "image_url": {"url": image_url}},
|
||||
{"type": "text", "text": content_text},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_image_url(image_url, content_text)
|
||||
|
||||
max_completion_tokens = 10
|
||||
# test single completion
|
||||
@ -188,15 +201,8 @@ async def test_error_on_invalid_image_url_type(
|
||||
async def test_single_chat_session_image_beamsearch(
|
||||
client: openai.AsyncOpenAI, model_name: str, image_url: str
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image_url", "image_url": {"url": image_url}},
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
content_text = "What's in this image?"
|
||||
messages = dummy_messages_from_image_url(image_url, content_text)
|
||||
|
||||
chat_completion = await client.chat.completions.create(
|
||||
model=model_name,
|
||||
@ -226,20 +232,10 @@ async def test_single_chat_session_image_base64encoded(
|
||||
base64_encoded_image: dict[str, str],
|
||||
):
|
||||
content_text = "What's in this image?"
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{base64_encoded_image[raw_image_url]}" # noqa: E501
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": content_text},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_image_url(
|
||||
f"data:image/jpeg;base64,{base64_encoded_image[raw_image_url]}",
|
||||
content_text,
|
||||
)
|
||||
|
||||
max_completion_tokens = 10
|
||||
# test single completion
|
||||
@ -293,20 +289,10 @@ async def test_single_chat_session_image_base64encoded_beamsearch(
|
||||
raw_image_url = TEST_IMAGE_ASSETS[image_idx]
|
||||
expected_res = EXPECTED_MM_BEAM_SEARCH_RES[image_idx]
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{base64_encoded_image[raw_image_url]}" # noqa: E501
|
||||
},
|
||||
},
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_image_url(
|
||||
f"data:image/jpeg;base64,{base64_encoded_image[raw_image_url]}"
|
||||
)
|
||||
|
||||
chat_completion = await client.chat.completions.create(
|
||||
model=model_name,
|
||||
messages=messages,
|
||||
@ -326,15 +312,7 @@ async def test_single_chat_session_image_base64encoded_beamsearch(
|
||||
async def test_chat_streaming_image(
|
||||
client: openai.AsyncOpenAI, model_name: str, image_url: str
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image_url", "image_url": {"url": image_url}},
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_image_url(image_url)
|
||||
|
||||
# test single completion
|
||||
chat_completion = await client.chat.completions.create(
|
||||
@ -381,18 +359,7 @@ async def test_chat_streaming_image(
|
||||
async def test_multi_image_input(
|
||||
client: openai.AsyncOpenAI, model_name: str, image_urls: list[str]
|
||||
):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*(
|
||||
{"type": "image_url", "image_url": {"url": image_url}}
|
||||
for image_url in image_urls
|
||||
),
|
||||
{"type": "text", "text": "What's in this image?"},
|
||||
],
|
||||
}
|
||||
]
|
||||
messages = dummy_messages_from_image_url(image_urls)
|
||||
|
||||
if len(image_urls) > MAXIMUM_IMAGES:
|
||||
with pytest.raises(openai.BadRequestError): # test multi-image input
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user