Expose PyTorch profiler configuration to environment variables (#21803)

Signed-off-by: Csrayz <33659823+Csrayz@users.noreply.github.com>
This commit is contained in:
Csrayz 2025-07-30 10:46:31 +08:00 committed by GitHub
parent fb58e3a651
commit b917da442b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 60 additions and 4 deletions

View File

@ -5,7 +5,12 @@
## Profile with PyTorch Profiler
We support tracing vLLM workers using the `torch.profiler` module. You can enable tracing by setting the `VLLM_TORCH_PROFILER_DIR` environment variable to the directory where you want to save the traces: `VLLM_TORCH_PROFILER_DIR=/mnt/traces/`
We support tracing vLLM workers using the `torch.profiler` module. You can enable tracing by setting the `VLLM_TORCH_PROFILER_DIR` environment variable to the directory where you want to save the traces: `VLLM_TORCH_PROFILER_DIR=/mnt/traces/`. Additionally, you can control the profiling content by specifying the following environment variables:
- `VLLM_TORCH_PROFILER_RECORD_SHAPES=1` to enable recording Tensor Shapes, off by default
- `VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1` to record memory, off by default
- `VLLM_TORCH_PROFILER_WITH_STACK=1` to enable recording stack information, on by default
- `VLLM_TORCH_PROFILER_WITH_FLOPS=1` to enable recording FLOPs, off by default
The OpenAI server also needs to be started with the `VLLM_TORCH_PROFILER_DIR` environment variable set.

View File

@ -80,6 +80,10 @@ if TYPE_CHECKING:
VLLM_PLUGINS: Optional[list[str]] = None
VLLM_LORA_RESOLVER_CACHE_DIR: Optional[str] = None
VLLM_TORCH_PROFILER_DIR: Optional[str] = None
VLLM_TORCH_PROFILER_RECORD_SHAPES: bool = False
VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY: bool = False
VLLM_TORCH_PROFILER_WITH_STACK: bool = True
VLLM_TORCH_PROFILER_WITH_FLOPS: bool = False
VLLM_USE_TRITON_AWQ: bool = False
VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
VLLM_SKIP_P2P_CHECK: bool = False
@ -629,6 +633,31 @@ environment_variables: dict[str, Callable[[], Any]] = {
lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os
.path.expanduser(os.getenv("VLLM_TORCH_PROFILER_DIR", "."))),
# Enable torch profiler to record shapes if set
# VLLM_TORCH_PROFILER_RECORD_SHAPES=1. If not set, torch profiler will
# not record shapes.
"VLLM_TORCH_PROFILER_RECORD_SHAPES":
lambda: bool(os.getenv("VLLM_TORCH_PROFILER_RECORD_SHAPES", "0") != "0"),
# Enable torch profiler to profile memory if set
# VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1. If not set, torch profiler
# will not profile memory.
"VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY":
lambda: bool(
os.getenv("VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY", "0") != "0"),
# Enable torch profiler to profile stack if set
# VLLM_TORCH_PROFILER_WITH_STACK=1. If not set, torch profiler WILL
# profile stack by default.
"VLLM_TORCH_PROFILER_WITH_STACK":
lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_STACK", "1") != "0"),
# Enable torch profiler to profile flops if set
# VLLM_TORCH_PROFILER_WITH_FLOPS=1. If not set, torch profiler will
# not profile flops.
"VLLM_TORCH_PROFILER_WITH_FLOPS":
lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_FLOPS", "0") != "0"),
# If set, vLLM will use Triton implementations of AWQ.
"VLLM_USE_TRITON_AWQ":
lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),

View File

@ -71,12 +71,23 @@ class Worker(WorkerBase):
torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
logger.info("Profiling enabled. Traces will be saved to: %s",
torch_profiler_trace_dir)
logger.debug(
"Profiler config: record_shapes=%s,"
"profile_memory=%s,with_stack=%s,with_flops=%s",
envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
envs.VLLM_TORCH_PROFILER_WITH_STACK,
envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
)
self.profiler = torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
with_stack=True,
record_shapes=envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
profile_memory=envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
with_flops=envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir, use_gzip=True))
else:

View File

@ -41,12 +41,23 @@ class XPUWorker(Worker):
torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
logger.info("Profiling enabled. Traces will be saved to: %s",
torch_profiler_trace_dir)
logger.debug(
"Profiler config: record_shapes=%s,"
"profile_memory=%s,with_stack=%s,with_flops=%s",
envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
envs.VLLM_TORCH_PROFILER_WITH_STACK,
envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
)
self.profiler = torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.XPU,
],
with_stack=True,
record_shapes=envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
profile_memory=envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
with_flops=envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir, use_gzip=True))
else: