mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 20:44:27 +08:00
[Model] Support Qwen2.5-Math-RM-72B (#8896)
This commit is contained in:
parent
2e7fe7e79f
commit
bc2ef1f77c
@ -11,6 +11,7 @@ from vllm.sequence import EmbeddingSequenceGroupOutput, PoolerOutput
|
|||||||
class PoolingType(IntEnum):
|
class PoolingType(IntEnum):
|
||||||
"""Enumeration for different types of pooling methods."""
|
"""Enumeration for different types of pooling methods."""
|
||||||
LAST = 0
|
LAST = 0
|
||||||
|
ALL = 1
|
||||||
|
|
||||||
|
|
||||||
class Pooler(nn.Module):
|
class Pooler(nn.Module):
|
||||||
@ -43,6 +44,12 @@ class Pooler(nn.Module):
|
|||||||
if self.pooling_type == PoolingType.LAST:
|
if self.pooling_type == PoolingType.LAST:
|
||||||
last_token_flat_indices = torch.cumsum(prompt_lens, dim=0) - 1
|
last_token_flat_indices = torch.cumsum(prompt_lens, dim=0) - 1
|
||||||
pooled_data = hidden_states[last_token_flat_indices]
|
pooled_data = hidden_states[last_token_flat_indices]
|
||||||
|
elif self.pooling_type == PoolingType.ALL:
|
||||||
|
offset = 0
|
||||||
|
pooled_data = []
|
||||||
|
for prompt_len in prompt_lens:
|
||||||
|
pooled_data.append(hidden_states[offset:offset + prompt_len])
|
||||||
|
offset += prompt_len
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Invalid pooling type: {self.pooling_type}")
|
raise ValueError(f"Invalid pooling type: {self.pooling_type}")
|
||||||
|
|
||||||
|
|||||||
@ -74,6 +74,7 @@ _GENERATION_MODELS = {
|
|||||||
|
|
||||||
_EMBEDDING_MODELS = {
|
_EMBEDDING_MODELS = {
|
||||||
"MistralModel": ("llama_embedding", "LlamaEmbeddingModel"),
|
"MistralModel": ("llama_embedding", "LlamaEmbeddingModel"),
|
||||||
|
"Qwen2ForRewardModel": ("qwen2_rm", "Qwen2ForRewardModel"),
|
||||||
}
|
}
|
||||||
|
|
||||||
_MULTIMODAL_MODELS = {
|
_MULTIMODAL_MODELS = {
|
||||||
|
|||||||
162
vllm/model_executor/models/qwen2_rm.py
Normal file
162
vllm/model_executor/models/qwen2_rm.py
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Adapted from
|
||||||
|
# https://huggingface.co/Qwen/Qwen2.5-Math-RM-72B/blob/main/modeling_qwen2_rm.py
|
||||||
|
# Copyright 2024 The Qwen team.
|
||||||
|
# Copyright 2023 The vLLM team.
|
||||||
|
"""Inference-only Qwen2-RM model compatible with HuggingFace weights."""
|
||||||
|
from typing import Iterable, List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from transformers import Qwen2Config
|
||||||
|
|
||||||
|
from vllm.attention import AttentionMetadata
|
||||||
|
from vllm.config import CacheConfig, LoRAConfig
|
||||||
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||||
|
RowParallelLinear)
|
||||||
|
from vllm.model_executor.layers.pooler import Pooler, PoolingType
|
||||||
|
from vllm.model_executor.layers.quantization.base_config import (
|
||||||
|
QuantizationConfig)
|
||||||
|
from vllm.model_executor.model_loader.weight_utils import (
|
||||||
|
default_weight_loader, maybe_remap_kv_scale_name)
|
||||||
|
from vllm.model_executor.models.qwen2 import Qwen2Model
|
||||||
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
||||||
|
from vllm.sequence import IntermediateTensors, PoolerOutput
|
||||||
|
|
||||||
|
from .utils import is_pp_missing_parameter
|
||||||
|
|
||||||
|
|
||||||
|
class ReLU(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.activation = nn.ReLU()
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
input, _ = input
|
||||||
|
return self.activation(input)
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2ForRewardModel(nn.Module):
|
||||||
|
packed_modules_mapping = {
|
||||||
|
"qkv_proj": [
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
],
|
||||||
|
"gate_up_proj": [
|
||||||
|
"gate_proj",
|
||||||
|
"up_proj",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
# LoRA specific attributes
|
||||||
|
supported_lora_modules = [
|
||||||
|
"qkv_proj",
|
||||||
|
"o_proj",
|
||||||
|
"gate_up_proj",
|
||||||
|
"down_proj",
|
||||||
|
]
|
||||||
|
embedding_modules = {}
|
||||||
|
embedding_padding_modules = []
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Qwen2Config,
|
||||||
|
cache_config: Optional[CacheConfig] = None,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
lora_config: Optional[LoRAConfig] = None,
|
||||||
|
) -> None:
|
||||||
|
# TODO (@robertgshaw2): see if this can be moved out
|
||||||
|
if (cache_config.sliding_window is not None
|
||||||
|
and hasattr(config, "max_window_layers")):
|
||||||
|
raise ValueError("Sliding window for some but all layers is not "
|
||||||
|
"supported. This model uses sliding window "
|
||||||
|
"but `max_window_layers` = %s is less than "
|
||||||
|
"`num_hidden_layers` = %s. Please open an issue "
|
||||||
|
"to discuss this feature." % (
|
||||||
|
config.max_window_layers,
|
||||||
|
config.num_hidden_layers,
|
||||||
|
))
|
||||||
|
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.config = config
|
||||||
|
self.lora_config = lora_config
|
||||||
|
|
||||||
|
self.quant_config = quant_config
|
||||||
|
self.model = Qwen2Model(config, cache_config, quant_config)
|
||||||
|
|
||||||
|
self.score = nn.Sequential(
|
||||||
|
ColumnParallelLinear(config.hidden_size,
|
||||||
|
config.hidden_size,
|
||||||
|
quant_config=quant_config),
|
||||||
|
ReLU(),
|
||||||
|
RowParallelLinear(config.hidden_size, 1,
|
||||||
|
quant_config=quant_config),
|
||||||
|
)
|
||||||
|
self._pooler = Pooler(pooling_type=PoolingType.ALL, normalize=False)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
kv_caches: List[torch.Tensor],
|
||||||
|
attn_metadata: AttentionMetadata,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||||
|
attn_metadata, intermediate_tensors)
|
||||||
|
logits, _ = self.score(hidden_states)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
def pooler(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
pooling_metadata: PoolingMetadata,
|
||||||
|
) -> Optional[PoolerOutput]:
|
||||||
|
return self._pooler(hidden_states, pooling_metadata)
|
||||||
|
|
||||||
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||||
|
stacked_params_mapping = [
|
||||||
|
# (param_name, shard_name, shard_id)
|
||||||
|
("qkv_proj", "q_proj", "q"),
|
||||||
|
("qkv_proj", "k_proj", "k"),
|
||||||
|
("qkv_proj", "v_proj", "v"),
|
||||||
|
("gate_up_proj", "gate_proj", 0),
|
||||||
|
("gate_up_proj", "up_proj", 1),
|
||||||
|
]
|
||||||
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
||||||
|
for name, loaded_weight in weights:
|
||||||
|
# Skip loading lm_head for embedding model
|
||||||
|
if name == "lm_head.weight":
|
||||||
|
continue
|
||||||
|
if "rotary_emb.inv_freq" in name:
|
||||||
|
continue
|
||||||
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||||
|
if weight_name not in name:
|
||||||
|
continue
|
||||||
|
name = name.replace(weight_name, param_name)
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
|
continue
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
|
param = params_dict[name]
|
||||||
|
weight_loader = param.weight_loader
|
||||||
|
weight_loader(param, loaded_weight, shard_id)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
|
continue
|
||||||
|
# Remapping the name of FP8 kv-scale.
|
||||||
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||||
|
if name is None:
|
||||||
|
continue
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
|
param = params_dict[name]
|
||||||
|
weight_loader = getattr(param, "weight_loader",
|
||||||
|
default_weight_loader)
|
||||||
|
weight_loader(param, loaded_weight)
|
||||||
Loading…
x
Reference in New Issue
Block a user