[Frontend] Add sagemaker_standards dynamic lora adapter and stateful session management decorators to vLLM OpenAI API server (#27892)

Signed-off-by: Zuyi Zhao <zhaozuy@amazon.com>
Signed-off-by: Shen Teng <sheteng@amazon.com>
Co-authored-by: Shen Teng <sheteng@amazon.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
This commit is contained in:
Zuyi Zhao 2025-11-10 20:57:01 -08:00 committed by GitHub
parent 8d706cca90
commit bca74e32b7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 1613 additions and 83 deletions

View File

@ -49,3 +49,4 @@ cbor2 # Required for cross-language serialization of hashable objects
setproctitle # Used to set process names for better debugging and monitoring
openai-harmony >= 0.0.3 # Required for gpt-oss
anthropic == 0.71.0
model-hosting-container-standards < 1.0.0

View File

View File

@ -0,0 +1,58 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Shared fixtures and utilities for SageMaker tests."""
import pytest
import pytest_asyncio
from ...utils import RemoteOpenAIServer
# Model name constants used across tests
MODEL_NAME_ZEPHYR = "HuggingFaceH4/zephyr-7b-beta"
MODEL_NAME_SMOLLM = "HuggingFaceTB/SmolLM2-135M-Instruct"
LORA_ADAPTER_NAME_SMOLLM = "jekunz/smollm-135m-lora-fineweb-faroese"
# SageMaker header constants
HEADER_SAGEMAKER_CLOSED_SESSION_ID = "X-Amzn-SageMaker-Closed-Session-Id"
HEADER_SAGEMAKER_SESSION_ID = "X-Amzn-SageMaker-Session-Id"
HEADER_SAGEMAKER_NEW_SESSION_ID = "X-Amzn-SageMaker-New-Session-Id"
@pytest.fixture(scope="session")
def smollm2_lora_files():
"""Download LoRA files once per test session."""
from huggingface_hub import snapshot_download
return snapshot_download(repo_id=LORA_ADAPTER_NAME_SMOLLM)
@pytest.fixture(scope="module")
def basic_server_with_lora(smollm2_lora_files):
"""Basic server fixture with standard configuration."""
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
# lora config below
"--enable-lora",
"--max-lora-rank",
"256",
"--max-cpu-loras",
"2",
"--max-num-seqs",
"64",
]
envs = {"VLLM_ALLOW_RUNTIME_LORA_UPDATING": "True"}
with RemoteOpenAIServer(MODEL_NAME_SMOLLM, args, env_dict=envs) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def async_client(basic_server_with_lora: RemoteOpenAIServer):
"""Async OpenAI client fixture for use with basic_server."""
async with basic_server_with_lora.get_async_client() as async_client:
yield async_client

View File

@ -0,0 +1,734 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Integration tests for handler override functionality.
Tests real customer usage scenarios:
- Using @custom_ping_handler and @custom_invocation_handler decorators
to override handlers
- Setting environment variables for handler specifications
- Writing customer scripts with custom_sagemaker_ping_handler() and
custom_sagemaker_invocation_handler() functions
- Priority: env vars > decorators > customer script files > framework
defaults
Note: These tests focus on validating server responses rather than directly calling
get_ping_handler() and get_invoke_handler() to ensure full integration testing.
"""
import os
import tempfile
import pytest
import requests
from ...utils import RemoteOpenAIServer
from .conftest import (
MODEL_NAME_SMOLLM,
)
class TestHandlerOverrideIntegration:
"""Integration tests simulating real customer usage scenarios.
Each test simulates a fresh server startup where customers:
- Use @custom_ping_handler and @custom_invocation_handler decorators
- Set environment variables (CUSTOM_FASTAPI_PING_HANDLER, etc.)
- Write customer scripts with custom_sagemaker_ping_handler() and
custom_sagemaker_invocation_handler() functions
"""
def setup_method(self):
"""Setup for each test - simulate fresh server startup."""
self._clear_caches()
self._clear_env_vars()
def teardown_method(self):
"""Cleanup after each test."""
self._clear_env_vars()
def _clear_caches(self):
"""Clear handler registry and function loader cache."""
try:
from model_hosting_container_standards.common.handler import (
handler_registry,
)
from model_hosting_container_standards.sagemaker.sagemaker_loader import (
SageMakerFunctionLoader,
)
handler_registry.clear()
SageMakerFunctionLoader._default_function_loader = None
except ImportError:
pytest.skip("model-hosting-container-standards not available")
def _clear_env_vars(self):
"""Clear SageMaker environment variables."""
try:
from model_hosting_container_standards.common.fastapi.config import (
FastAPIEnvVars,
)
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
# Clear SageMaker env vars
for var in [
SageMakerEnvVars.SAGEMAKER_MODEL_PATH,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME,
]:
os.environ.pop(var, None)
# Clear FastAPI env vars
for var in [
FastAPIEnvVars.CUSTOM_FASTAPI_PING_HANDLER,
FastAPIEnvVars.CUSTOM_FASTAPI_INVOCATION_HANDLER,
]:
os.environ.pop(var, None)
except ImportError:
pass
@pytest.mark.asyncio
async def test_customer_script_functions_auto_loaded(self):
"""Test customer scenario: script functions automatically override
framework defaults."""
try:
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Customer writes a script file with ping() and invoke() functions
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
from fastapi import Request
async def custom_sagemaker_ping_handler():
return {
"status": "healthy",
"source": "customer_override",
"message": "Custom ping from customer script"
}
async def custom_sagemaker_invocation_handler(request: Request):
return {
"predictions": ["Custom response from customer script"],
"source": "customer_override"
}
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
# Customer sets SageMaker environment variables to point to their script
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
# Customer tests their server and sees their overrides work
# automatically
ping_response = requests.get(server.url_for("ping"))
assert ping_response.status_code == 200
ping_data = ping_response.json()
invoke_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
},
)
assert invoke_response.status_code == 200
invoke_data = invoke_response.json()
# Customer sees their functions are used
assert ping_data["source"] == "customer_override"
assert ping_data["message"] == "Custom ping from customer script"
assert invoke_data["source"] == "customer_override"
assert invoke_data["predictions"] == [
"Custom response from customer script"
]
finally:
os.unlink(script_path)
@pytest.mark.asyncio
async def test_customer_decorator_usage(self):
"""Test customer scenario: using @custom_ping_handler and
@custom_invocation_handler decorators."""
try:
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Customer writes a script file with decorators
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
import model_hosting_container_standards.sagemaker as sagemaker_standards
from fastapi import Request
@sagemaker_standards.custom_ping_handler
async def my_ping():
return {
"type": "ping",
"source": "customer_decorator"
}
@sagemaker_standards.custom_invocation_handler
async def my_invoke(request: Request):
return {
"type": "invoke",
"source": "customer_decorator"
}
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
ping_response = requests.get(server.url_for("ping"))
assert ping_response.status_code == 200
ping_data = ping_response.json()
invoke_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
},
)
assert invoke_response.status_code == 200
invoke_data = invoke_response.json()
# Customer sees their handlers are used by the server
assert ping_data["source"] == "customer_decorator"
assert invoke_data["source"] == "customer_decorator"
finally:
os.unlink(script_path)
@pytest.mark.asyncio
async def test_handler_priority_order(self):
"""Test priority: @custom_ping_handler/@custom_invocation_handler
decorators vs script functions."""
try:
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Customer writes a script with both decorator and regular functions
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
import model_hosting_container_standards.sagemaker as sagemaker_standards
from fastapi import Request
# Customer uses @custom_ping_handler decorator (higher priority than script functions)
@sagemaker_standards.custom_ping_handler
async def decorated_ping():
return {
"status": "healthy",
"source": "ping_decorator_in_script",
"priority": "decorator"
}
# Customer also has a regular function (lower priority than
# @custom_ping_handler decorator)
async def custom_sagemaker_ping_handler():
return {
"status": "healthy",
"source": "script_function",
"priority": "function"
}
# Customer has a regular invoke function
async def custom_sagemaker_invocation_handler(request: Request):
return {
"predictions": ["Script function response"],
"source": "script_invoke_function",
"priority": "function"
}
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
ping_response = requests.get(server.url_for("ping"))
assert ping_response.status_code == 200
ping_data = ping_response.json()
invoke_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
},
)
assert invoke_response.status_code == 200
invoke_data = invoke_response.json()
# @custom_ping_handler decorator has higher priority than
# script function
assert ping_data["source"] == "ping_decorator_in_script"
assert ping_data["priority"] == "decorator"
# Script function is used for invoke
assert invoke_data["source"] == "script_invoke_function"
assert invoke_data["priority"] == "function"
finally:
os.unlink(script_path)
@pytest.mark.asyncio
async def test_environment_variable_script_loading(self):
"""Test that environment variables correctly specify script location
and loading."""
try:
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Customer writes a script in a specific directory
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
from fastapi import Request
async def custom_sagemaker_ping_handler():
return {
"status": "healthy",
"source": "env_loaded_script",
"method": "environment_variable_loading"
}
async def custom_sagemaker_invocation_handler(request: Request):
return {
"predictions": ["Loaded via environment variables"],
"source": "env_loaded_script",
"method": "environment_variable_loading"
}
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
# Test environment variable script loading
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
ping_response = requests.get(server.url_for("ping"))
assert ping_response.status_code == 200
ping_data = ping_response.json()
invoke_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
},
)
assert invoke_response.status_code == 200
invoke_data = invoke_response.json()
# Verify that the script was loaded via environment variables
assert ping_data["source"] == "env_loaded_script"
assert ping_data["method"] == "environment_variable_loading"
assert invoke_data["source"] == "env_loaded_script"
assert invoke_data["method"] == "environment_variable_loading"
finally:
os.unlink(script_path)
@pytest.mark.asyncio
async def test_framework_default_handlers(self):
"""Test that framework default handlers work when no customer
overrides exist."""
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
# Explicitly pass empty env_dict to ensure no SageMaker env vars are set
# This prevents pollution from previous tests
try:
from model_hosting_container_standards.common.fastapi.config import (
FastAPIEnvVars,
)
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
env_dict = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: "",
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: "",
FastAPIEnvVars.CUSTOM_FASTAPI_PING_HANDLER: "",
FastAPIEnvVars.CUSTOM_FASTAPI_INVOCATION_HANDLER: "",
}
except ImportError:
env_dict = {}
with RemoteOpenAIServer(MODEL_NAME_SMOLLM, args, env_dict=env_dict) as server:
# Test that default ping works
ping_response = requests.get(server.url_for("ping"))
assert ping_response.status_code == 200
# Test that default invocations work
invoke_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
},
)
assert invoke_response.status_code == 200
@pytest.mark.asyncio
async def test_handler_env_var_override(self):
"""Test CUSTOM_FASTAPI_PING_HANDLER and CUSTOM_FASTAPI_INVOCATION_HANDLER
environment variable overrides."""
try:
from model_hosting_container_standards.common.fastapi.config import (
FastAPIEnvVars,
)
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Create a script with both env var handlers and script functions
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
from fastapi import Request, Response
import json
async def env_var_ping_handler(raw_request: Request) -> Response:
return Response(
content=json.dumps({
"status": "healthy",
"source": "env_var_ping",
"method": "environment_variable"
}),
media_type="application/json"
)
async def env_var_invoke_handler(raw_request: Request) -> Response:
return Response(
content=json.dumps({
"predictions": ["Environment variable response"],
"source": "env_var_invoke",
"method": "environment_variable"
}),
media_type="application/json"
)
async def custom_sagemaker_ping_handler():
return {
"status": "healthy",
"source": "script_ping",
"method": "script_function"
}
async def custom_sagemaker_invocation_handler(request: Request):
return {
"predictions": ["Script function response"],
"source": "script_invoke",
"method": "script_function"
}
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
# Set environment variables to override both handlers
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
FastAPIEnvVars.CUSTOM_FASTAPI_PING_HANDLER: (
f"{script_name}:env_var_ping_handler"
),
FastAPIEnvVars.CUSTOM_FASTAPI_INVOCATION_HANDLER: (
f"{script_name}:env_var_invoke_handler"
),
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
# Test ping handler override
ping_response = requests.get(server.url_for("ping"))
assert ping_response.status_code == 200
ping_data = ping_response.json()
# Environment variable should override script function
assert ping_data["method"] == "environment_variable"
assert ping_data["source"] == "env_var_ping"
# Test invocation handler override
invoke_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
},
)
assert invoke_response.status_code == 200
invoke_data = invoke_response.json()
# Environment variable should override script function
assert invoke_data["method"] == "environment_variable"
assert invoke_data["source"] == "env_var_invoke"
finally:
os.unlink(script_path)
@pytest.mark.asyncio
async def test_env_var_priority_over_decorator_and_script(self):
"""Test that environment variables have highest priority over decorators
and script functions for both ping and invocation handlers."""
try:
from model_hosting_container_standards.common.fastapi.config import (
FastAPIEnvVars,
)
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Create a script with all three handler types for both ping and invocation
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
import model_hosting_container_standards.sagemaker as sagemaker_standards
from fastapi import Request, Response
import json
# Environment variable handlers (highest priority)
async def env_priority_ping(raw_request: Request) -> Response:
return Response(
content=json.dumps({
"status": "healthy",
"source": "env_var",
"priority": "environment_variable"
}),
media_type="application/json"
)
async def env_priority_invoke(raw_request: Request) -> Response:
return Response(
content=json.dumps({
"predictions": ["Environment variable response"],
"source": "env_var",
"priority": "environment_variable"
}),
media_type="application/json"
)
# Decorator handlers (medium priority)
@sagemaker_standards.custom_ping_handler
async def decorator_ping(raw_request: Request) -> Response:
return Response(
content=json.dumps({
"status": "healthy",
"source": "decorator",
"priority": "decorator"
}),
media_type="application/json"
)
@sagemaker_standards.custom_invocation_handler
async def decorator_invoke(raw_request: Request) -> Response:
return Response(
content=json.dumps({
"predictions": ["Decorator response"],
"source": "decorator",
"priority": "decorator"
}),
media_type="application/json"
)
# Script functions (lowest priority)
async def custom_sagemaker_ping_handler():
return {
"status": "healthy",
"source": "script",
"priority": "script_function"
}
async def custom_sagemaker_invocation_handler(request: Request):
return {
"predictions": ["Script function response"],
"source": "script",
"priority": "script_function"
}
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
# Set environment variables to specify highest priority handlers
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
FastAPIEnvVars.CUSTOM_FASTAPI_PING_HANDLER: (
f"{script_name}:env_priority_ping"
),
FastAPIEnvVars.CUSTOM_FASTAPI_INVOCATION_HANDLER: (
f"{script_name}:env_priority_invoke"
),
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
# Test ping handler priority
ping_response = requests.get(server.url_for("ping"))
assert ping_response.status_code == 200
ping_data = ping_response.json()
# Environment variable has highest priority and should be used
assert ping_data["priority"] == "environment_variable"
assert ping_data["source"] == "env_var"
# Test invocation handler priority
invoke_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
},
)
assert invoke_response.status_code == 200
invoke_data = invoke_response.json()
# Environment variable has highest priority and should be used
assert invoke_data["priority"] == "environment_variable"
assert invoke_data["source"] == "env_var"
finally:
os.unlink(script_path)

View File

@ -0,0 +1,171 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import openai # use the official async_client for correctness check
import pytest
import requests
from ...utils import RemoteOpenAIServer
from .conftest import MODEL_NAME_SMOLLM
@pytest.mark.asyncio
async def test_sagemaker_load_adapter_happy_path(
async_client: openai.AsyncOpenAI,
basic_server_with_lora: RemoteOpenAIServer,
smollm2_lora_files,
):
# The SageMaker standards library creates a POST /adapters endpoint
# that maps to the load_lora_adapter handler with request shape:
# {"lora_name": "body.name", "lora_path": "body.src"}
load_response = requests.post(
basic_server_with_lora.url_for("adapters"),
json={"name": "smollm2-lora-sagemaker", "src": smollm2_lora_files},
)
load_response.raise_for_status()
models = await async_client.models.list()
models = models.data
dynamic_lora_model = models[-1]
assert dynamic_lora_model.root == smollm2_lora_files
assert dynamic_lora_model.parent == MODEL_NAME_SMOLLM
assert dynamic_lora_model.id == "smollm2-lora-sagemaker"
@pytest.mark.asyncio
async def test_sagemaker_unload_adapter_happy_path(
async_client: openai.AsyncOpenAI,
basic_server_with_lora: RemoteOpenAIServer,
smollm2_lora_files,
):
# First, load an adapter
adapter_name = "smollm2-lora-sagemaker-unload"
load_response = requests.post(
basic_server_with_lora.url_for("adapters"),
json={"name": adapter_name, "src": smollm2_lora_files},
)
load_response.raise_for_status()
# Verify it's in the models list
models = await async_client.models.list()
adapter_ids = [model.id for model in models.data]
assert adapter_name in adapter_ids
# Now unload it using DELETE /adapters/{adapter_name}
# The SageMaker standards maps this to unload_lora_adapter with:
# {"lora_name": "path_params.adapter_name"}
unload_response = requests.delete(
basic_server_with_lora.url_for("adapters", adapter_name),
)
unload_response.raise_for_status()
# Verify it's no longer in the models list
models = await async_client.models.list()
adapter_ids = [model.id for model in models.data]
assert adapter_name not in adapter_ids
@pytest.mark.asyncio
async def test_sagemaker_load_adapter_not_found(
basic_server_with_lora: RemoteOpenAIServer,
):
load_response = requests.post(
basic_server_with_lora.url_for("adapters"),
json={"name": "nonexistent-adapter", "src": "/path/does/not/exist"},
)
assert load_response.status_code == 404
@pytest.mark.asyncio
async def test_sagemaker_load_adapter_invalid_files(
basic_server_with_lora: RemoteOpenAIServer,
tmp_path,
):
invalid_files = tmp_path / "invalid_adapter"
invalid_files.mkdir()
(invalid_files / "adapter_config.json").write_text("not valid json")
load_response = requests.post(
basic_server_with_lora.url_for("adapters"),
json={"name": "invalid-adapter", "src": str(invalid_files)},
)
assert load_response.status_code == 400
@pytest.mark.asyncio
async def test_sagemaker_unload_nonexistent_adapter(
basic_server_with_lora: RemoteOpenAIServer,
):
# Attempt to unload an adapter that doesn't exist
unload_response = requests.delete(
basic_server_with_lora.url_for("adapters", "nonexistent-adapter-name"),
)
assert unload_response.status_code in (400, 404)
@pytest.mark.asyncio
async def test_sagemaker_invocations_with_adapter(
basic_server_with_lora: RemoteOpenAIServer,
smollm2_lora_files,
):
# First, load an adapter via SageMaker endpoint
adapter_name = "smollm2-lora-invoke-test"
load_response = requests.post(
basic_server_with_lora.url_for("adapters"),
json={"name": adapter_name, "src": smollm2_lora_files},
)
load_response.raise_for_status()
# Now test the /invocations endpoint with the adapter
invocation_response = requests.post(
basic_server_with_lora.url_for("invocations"),
headers={
"X-Amzn-SageMaker-Adapter-Identifier": adapter_name,
},
json={
"prompt": "Hello, how are you?",
"max_tokens": 10,
},
)
invocation_response.raise_for_status()
invocation_output = invocation_response.json()
# Verify we got a valid completion response
assert "choices" in invocation_output
assert len(invocation_output["choices"]) > 0
assert "text" in invocation_output["choices"][0]
@pytest.mark.asyncio
async def test_sagemaker_multiple_adapters_load_unload(
async_client: openai.AsyncOpenAI,
basic_server_with_lora: RemoteOpenAIServer,
smollm2_lora_files,
):
adapter_names = [f"sagemaker-adapter-{i}" for i in range(5)]
# Load all adapters
for adapter_name in adapter_names:
load_response = requests.post(
basic_server_with_lora.url_for("adapters"),
json={"name": adapter_name, "src": smollm2_lora_files},
)
load_response.raise_for_status()
# Verify all are in the models list
models = await async_client.models.list()
adapter_ids = [model.id for model in models.data]
for adapter_name in adapter_names:
assert adapter_name in adapter_ids
# Unload all adapters
for adapter_name in adapter_names:
unload_response = requests.delete(
basic_server_with_lora.url_for("adapters", adapter_name),
)
unload_response.raise_for_status()
# Verify all are removed from models list
models = await async_client.models.list()
adapter_ids = [model.id for model in models.data]
for adapter_name in adapter_names:
assert adapter_name not in adapter_ids

View File

@ -0,0 +1,346 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Integration test for middleware loader functionality.
Tests that customer middlewares get called correctly with a vLLM server.
"""
import os
import tempfile
import pytest
import requests
from ...utils import RemoteOpenAIServer
from .conftest import (
MODEL_NAME_SMOLLM,
)
class TestMiddlewareIntegration:
"""Integration test for middleware with vLLM server."""
def setup_method(self):
"""Setup for each test - simulate fresh server startup."""
self._clear_caches()
def _clear_caches(self):
"""Clear middleware registry and function loader cache."""
try:
from model_hosting_container_standards.common.fastapi.middleware import (
middleware_registry,
)
from model_hosting_container_standards.common.fastapi.middleware.source.decorator_loader import ( # noqa: E501
decorator_loader,
)
from model_hosting_container_standards.sagemaker.sagemaker_loader import (
SageMakerFunctionLoader,
)
middleware_registry.clear_middlewares()
decorator_loader.clear()
SageMakerFunctionLoader._default_function_loader = None
except ImportError:
pytest.skip("model-hosting-container-standards not available")
@pytest.mark.asyncio
async def test_customer_middleware_with_vllm_server(self):
"""Test that customer middlewares work with actual vLLM server.
Tests decorator-based middlewares (@custom_middleware, @input_formatter,
@output_formatter)
on multiple endpoints (chat/completions, invocations).
"""
try:
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Customer writes a middleware script with multiple decorators
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
from model_hosting_container_standards.common.fastapi.middleware import (
custom_middleware, input_formatter, output_formatter
)
# Global flag to track if input formatter was called
_input_formatter_called = False
@input_formatter
async def customer_input_formatter(request):
# Process input - mark that input formatter was called
global _input_formatter_called
_input_formatter_called = True
return request
@custom_middleware("throttle")
async def customer_throttle_middleware(request, call_next):
response = await call_next(request)
response.headers["X-Customer-Throttle"] = "applied"
order = response.headers.get("X-Middleware-Order", "")
response.headers["X-Middleware-Order"] = order + "throttle,"
return response
@output_formatter
async def customer_output_formatter(response):
global _input_formatter_called
response.headers["X-Customer-Processed"] = "true"
# Since input_formatter and output_formatter are combined into
# pre_post_process middleware,
# if output_formatter is called, input_formatter should have been called too
if _input_formatter_called:
response.headers["X-Input-Formatter-Called"] = "true"
order = response.headers.get("X-Middleware-Order", "")
response.headers["X-Middleware-Order"] = order + "output_formatter,"
return response
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
# Set environment variables to point to customer script
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
# Test 1: Middlewares applied to chat/completions endpoint
chat_response = requests.post(
server.url_for("v1/chat/completions"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
"temperature": 0.0,
},
)
assert chat_response.status_code == 200
# Verify all middlewares were executed
assert "X-Customer-Throttle" in chat_response.headers
assert chat_response.headers["X-Customer-Throttle"] == "applied"
assert "X-Customer-Processed" in chat_response.headers
assert chat_response.headers["X-Customer-Processed"] == "true"
# Verify input formatter was called
assert "X-Input-Formatter-Called" in chat_response.headers
assert chat_response.headers["X-Input-Formatter-Called"] == "true"
# Verify middleware execution order
execution_order = chat_response.headers.get(
"X-Middleware-Order", ""
).rstrip(",")
order_parts = execution_order.split(",") if execution_order else []
assert "throttle" in order_parts
assert "output_formatter" in order_parts
# Test 2: Middlewares applied to invocations endpoint
invocations_response = requests.post(
server.url_for("invocations"),
json={
"model": MODEL_NAME_SMOLLM,
"messages": [{"role": "user", "content": "Hello"}],
"max_tokens": 5,
"temperature": 0.0,
},
)
assert invocations_response.status_code == 200
# Verify all middlewares were executed
assert "X-Customer-Throttle" in invocations_response.headers
assert invocations_response.headers["X-Customer-Throttle"] == "applied"
assert "X-Customer-Processed" in invocations_response.headers
assert invocations_response.headers["X-Customer-Processed"] == "true"
# Verify input formatter was called
assert "X-Input-Formatter-Called" in invocations_response.headers
assert (
invocations_response.headers["X-Input-Formatter-Called"] == "true"
)
finally:
os.unlink(script_path)
@pytest.mark.asyncio
async def test_middleware_with_ping_endpoint(self):
"""Test that middlewares work with SageMaker ping endpoint."""
try:
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Customer writes a middleware script
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
from model_hosting_container_standards.common.fastapi.middleware import (
custom_middleware
)
@custom_middleware("pre_post_process")
async def ping_tracking_middleware(request, call_next):
response = await call_next(request)
if request.url.path == "/ping":
response.headers["X-Ping-Tracked"] = "true"
return response
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
# Test ping endpoint with middleware
response = requests.get(server.url_for("ping"))
assert response.status_code == 200
assert "X-Ping-Tracked" in response.headers
assert response.headers["X-Ping-Tracked"] == "true"
finally:
os.unlink(script_path)
@pytest.mark.asyncio
async def test_middleware_env_var_override(self):
"""Test middleware environment variable overrides."""
try:
from model_hosting_container_standards.common.fastapi.config import (
FastAPIEnvVars,
)
from model_hosting_container_standards.sagemaker.config import (
SageMakerEnvVars,
)
except ImportError:
pytest.skip("model-hosting-container-standards not available")
# Create a script with middleware functions specified via env vars
with tempfile.NamedTemporaryFile(mode="w", suffix=".py", delete=False) as f:
f.write(
"""
from fastapi import Request
# Global flag to track if pre_process was called
_pre_process_called = False
async def env_throttle_middleware(request, call_next):
response = await call_next(request)
response.headers["X-Env-Throttle"] = "applied"
return response
async def env_pre_process(request: Request) -> Request:
# Mark that pre_process was called
global _pre_process_called
_pre_process_called = True
return request
async def env_post_process(response):
global _pre_process_called
if hasattr(response, 'headers'):
response.headers["X-Env-Post-Process"] = "applied"
# Since pre_process and post_process are combined into
# pre_post_process middleware,
# if post_process is called, pre_process should have been called too
if _pre_process_called:
response.headers["X-Pre-Process-Called"] = "true"
return response
"""
)
script_path = f.name
try:
script_dir = os.path.dirname(script_path)
script_name = os.path.basename(script_path)
# Set environment variables for middleware
# Use script_name with .py extension as per plugin example
env_vars = {
SageMakerEnvVars.SAGEMAKER_MODEL_PATH: script_dir,
SageMakerEnvVars.CUSTOM_SCRIPT_FILENAME: script_name,
FastAPIEnvVars.CUSTOM_FASTAPI_MIDDLEWARE_THROTTLE: (
f"{script_name}:env_throttle_middleware"
),
FastAPIEnvVars.CUSTOM_PRE_PROCESS: f"{script_name}:env_pre_process",
FastAPIEnvVars.CUSTOM_POST_PROCESS: f"{script_name}:env_post_process",
}
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"2048",
"--enforce-eager",
"--max-num-seqs",
"32",
]
with RemoteOpenAIServer(
MODEL_NAME_SMOLLM, args, env_dict=env_vars
) as server:
response = requests.get(server.url_for("ping"))
assert response.status_code == 200
# Check if environment variable middleware was applied
headers = response.headers
# Verify that env var middlewares were applied
assert "X-Env-Throttle" in headers, (
"Throttle middleware should be applied via env var"
)
assert headers["X-Env-Throttle"] == "applied"
assert "X-Env-Post-Process" in headers, (
"Post-process middleware should be applied via env var"
)
assert headers["X-Env-Post-Process"] == "applied"
# Verify that pre_process was called
assert "X-Pre-Process-Called" in headers, (
"Pre-process should be called via env var"
)
assert headers["X-Pre-Process-Called"] == "true"
finally:
os.unlink(script_path)

View File

@ -0,0 +1,153 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import openai # use the official client for correctness check
import pytest
import requests
from ...utils import RemoteOpenAIServer
from .conftest import (
HEADER_SAGEMAKER_CLOSED_SESSION_ID,
HEADER_SAGEMAKER_NEW_SESSION_ID,
HEADER_SAGEMAKER_SESSION_ID,
MODEL_NAME_SMOLLM,
)
CLOSE_BADREQUEST_CASES = [
(
"nonexistent_session_id",
{"session_id": "nonexistent-session-id"},
{},
"session not found",
),
("malformed_close_request", {}, {"extra-field": "extra-field-data"}, None),
]
@pytest.mark.asyncio
async def test_create_session_badrequest(basic_server_with_lora: RemoteOpenAIServer):
bad_response = requests.post(
basic_server_with_lora.url_for("invocations"),
json={"requestType": "NEW_SESSION", "extra-field": "extra-field-data"},
)
assert bad_response.status_code == 400
@pytest.mark.asyncio
@pytest.mark.parametrize(
"test_name,session_id_change,request_body_change,expected_error",
CLOSE_BADREQUEST_CASES,
)
async def test_close_session_badrequest(
basic_server_with_lora: RemoteOpenAIServer,
test_name: str,
session_id_change: dict[str, str],
request_body_change: dict[str, str],
expected_error: str | None,
):
# first attempt to create a session
url = basic_server_with_lora.url_for("invocations")
create_response = requests.post(url, json={"requestType": "NEW_SESSION"})
create_response.raise_for_status()
valid_session_id, expiration = create_response.headers.get(
HEADER_SAGEMAKER_NEW_SESSION_ID, ""
).split(";")
assert valid_session_id
close_request_json = {"requestType": "CLOSE"}
if request_body_change:
close_request_json.update(request_body_change)
bad_session_id = session_id_change.get("session_id")
bad_close_response = requests.post(
url,
headers={HEADER_SAGEMAKER_SESSION_ID: bad_session_id or valid_session_id},
json=close_request_json,
)
# clean up created session, should succeed
clean_up_response = requests.post(
url,
headers={HEADER_SAGEMAKER_SESSION_ID: valid_session_id},
json={"requestType": "CLOSE"},
)
clean_up_response.raise_for_status()
assert bad_close_response.status_code == 400
if expected_error:
assert expected_error in bad_close_response.json()["error"]["message"]
@pytest.mark.asyncio
async def test_close_session_invalidrequest(
basic_server_with_lora: RemoteOpenAIServer, async_client: openai.AsyncOpenAI
):
# first attempt to create a session
url = basic_server_with_lora.url_for("invocations")
create_response = requests.post(url, json={"requestType": "NEW_SESSION"})
create_response.raise_for_status()
valid_session_id, expiration = create_response.headers.get(
HEADER_SAGEMAKER_NEW_SESSION_ID, ""
).split(";")
assert valid_session_id
close_request_json = {"requestType": "CLOSE"}
invalid_close_response = requests.post(
url,
# no headers to specify session_id
json=close_request_json,
)
# clean up created session, should succeed
clean_up_response = requests.post(
url,
headers={HEADER_SAGEMAKER_SESSION_ID: valid_session_id},
json={"requestType": "CLOSE"},
)
clean_up_response.raise_for_status()
assert invalid_close_response.status_code == 424
assert "invalid session_id" in invalid_close_response.json()["error"]["message"]
@pytest.mark.asyncio
async def test_session(basic_server_with_lora: RemoteOpenAIServer):
# first attempt to create a session
url = basic_server_with_lora.url_for("invocations")
create_response = requests.post(url, json={"requestType": "NEW_SESSION"})
create_response.raise_for_status()
valid_session_id, expiration = create_response.headers.get(
HEADER_SAGEMAKER_NEW_SESSION_ID, ""
).split(";")
assert valid_session_id
# test invocation with session id
request_args = {
"model": MODEL_NAME_SMOLLM,
"prompt": "what is 1+1?",
"max_completion_tokens": 5,
"temperature": 0.0,
"logprobs": False,
}
invocation_response = requests.post(
basic_server_with_lora.url_for("invocations"),
headers={HEADER_SAGEMAKER_SESSION_ID: valid_session_id},
json=request_args,
)
invocation_response.raise_for_status()
# close created session, should succeed
close_response = requests.post(
url,
headers={HEADER_SAGEMAKER_SESSION_ID: valid_session_id},
json={"requestType": "CLOSE"},
)
close_response.raise_for_status()
assert (
close_response.headers.get(HEADER_SAGEMAKER_CLOSED_SESSION_ID)
== valid_session_id
)

View File

@ -0,0 +1,57 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import model_hosting_container_standards.sagemaker as sagemaker_standards
from fastapi import APIRouter, Depends, Request
from fastapi.responses import JSONResponse, Response
from vllm.entrypoints.openai.api_server import models, validate_json_request
from vllm.entrypoints.openai.protocol import (
ErrorResponse,
LoadLoRAAdapterRequest,
UnloadLoRAAdapterRequest,
)
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
from vllm.logger import init_logger
logger = init_logger(__name__)
def register_dynamic_lora_routes(router: APIRouter):
@sagemaker_standards.register_load_adapter_handler(
request_shape={
"lora_name": "body.name",
"lora_path": "body.src",
},
)
@router.post("/v1/load_lora_adapter", dependencies=[Depends(validate_json_request)])
async def load_lora_adapter(request: LoadLoRAAdapterRequest, raw_request: Request):
handler: OpenAIServingModels = models(raw_request)
response = await handler.load_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(
content=response.model_dump(), status_code=response.error.code
)
return Response(status_code=200, content=response)
@sagemaker_standards.register_unload_adapter_handler(
request_shape={
"lora_name": "path_params.adapter_name",
}
)
@router.post(
"/v1/unload_lora_adapter", dependencies=[Depends(validate_json_request)]
)
async def unload_lora_adapter(
request: UnloadLoRAAdapterRequest, raw_request: Request
):
handler: OpenAIServingModels = models(raw_request)
response = await handler.unload_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(
content=response.model_dump(), status_code=response.error.code
)
return Response(status_code=200, content=response)
return router

View File

@ -19,6 +19,7 @@ from contextlib import asynccontextmanager
from http import HTTPStatus
from typing import Annotated, Any, Literal
import model_hosting_container_standards.sagemaker as sagemaker_standards
import prometheus_client
import pydantic
import regex as re
@ -65,7 +66,6 @@ from vllm.entrypoints.openai.protocol import (
ErrorInfo,
ErrorResponse,
IOProcessorResponse,
LoadLoRAAdapterRequest,
PoolingBytesResponse,
PoolingRequest,
PoolingResponse,
@ -82,7 +82,6 @@ from vllm.entrypoints.openai.protocol import (
TranscriptionResponse,
TranslationRequest,
TranslationResponse,
UnloadLoRAAdapterRequest,
)
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_classification import ServingClassification
@ -387,13 +386,6 @@ async def get_server_load_metrics(request: Request):
return JSONResponse(content={"server_load": request.app.state.server_load_metrics})
@router.get("/ping", response_class=Response)
@router.post("/ping", response_class=Response)
async def ping(raw_request: Request) -> Response:
"""Ping check. Endpoint required for SageMaker"""
return await health(raw_request)
@router.post(
"/tokenize",
dependencies=[Depends(validate_json_request)],
@ -1236,47 +1228,6 @@ INVOCATION_VALIDATORS = [
]
@router.post(
"/invocations",
dependencies=[Depends(validate_json_request)],
responses={
HTTPStatus.BAD_REQUEST.value: {"model": ErrorResponse},
HTTPStatus.UNSUPPORTED_MEDIA_TYPE.value: {"model": ErrorResponse},
HTTPStatus.INTERNAL_SERVER_ERROR.value: {"model": ErrorResponse},
},
)
async def invocations(raw_request: Request):
"""For SageMaker, routes requests based on the request type."""
try:
body = await raw_request.json()
except json.JSONDecodeError as e:
raise HTTPException(
status_code=HTTPStatus.BAD_REQUEST.value, detail=f"JSON decode error: {e}"
) from e
valid_endpoints = [
(validator, endpoint)
for validator, (get_handler, endpoint) in INVOCATION_VALIDATORS
if get_handler(raw_request) is not None
]
for request_validator, endpoint in valid_endpoints:
try:
request = request_validator.validate_python(body)
except pydantic.ValidationError:
continue
return await endpoint(request, raw_request)
type_names = [
t.__name__ if isinstance(t := validator._type, type) else str(t)
for validator, _ in valid_endpoints
]
msg = f"Cannot find suitable handler for request. Expected one of: {type_names}"
res = base(raw_request).create_error_response(message=msg)
return JSONResponse(content=res.model_dump(), status_code=res.error.code)
if envs.VLLM_TORCH_PROFILER_DIR:
logger.warning_once(
"Torch Profiler is enabled in the API server. This should ONLY be "
@ -1304,39 +1255,6 @@ if envs.VLLM_TORCH_PROFILER_DIR or envs.VLLM_TORCH_CUDA_PROFILE:
return Response(status_code=200)
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
logger.warning(
"LoRA dynamic loading & unloading is enabled in the API server. "
"This should ONLY be used for local development!"
)
@router.post("/v1/load_lora_adapter", dependencies=[Depends(validate_json_request)])
async def load_lora_adapter(request: LoadLoRAAdapterRequest, raw_request: Request):
handler = models(raw_request)
response = await handler.load_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(
content=response.model_dump(), status_code=response.error.code
)
return Response(status_code=200, content=response)
@router.post(
"/v1/unload_lora_adapter", dependencies=[Depends(validate_json_request)]
)
async def unload_lora_adapter(
request: UnloadLoRAAdapterRequest, raw_request: Request
):
handler = models(raw_request)
response = await handler.unload_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(
content=response.model_dump(), status_code=response.error.code
)
return Response(status_code=200, content=response)
def load_log_config(log_config_file: str | None) -> dict | None:
if not log_config_file:
return None
@ -1606,6 +1524,20 @@ def build_app(args: Namespace) -> FastAPI:
)
else:
app = FastAPI(lifespan=lifespan)
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
logger.warning(
"LoRA dynamic loading & unloading is enabled in the API server. "
"This should ONLY be used for local development!"
)
from vllm.entrypoints.dynamic_lora import register_dynamic_lora_routes
register_dynamic_lora_routes(router)
from vllm.entrypoints.sagemaker.routes import register_sagemaker_routes
register_sagemaker_routes(router)
app.include_router(router)
app.root_path = args.root_path
@ -1696,6 +1628,8 @@ def build_app(args: Namespace) -> FastAPI:
f"Invalid middleware {middleware}. Must be a function or a class."
)
app = sagemaker_standards.bootstrap(app)
return app

View File

@ -0,0 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""SageMaker-specific integration for vLLM."""

View File

@ -0,0 +1,72 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
from http import HTTPStatus
import model_hosting_container_standards.sagemaker as sagemaker_standards
import pydantic
from fastapi import APIRouter, Depends, HTTPException, Request
from fastapi.responses import JSONResponse, Response
from vllm.entrypoints.openai.api_server import (
INVOCATION_VALIDATORS,
base,
health,
validate_json_request,
)
from vllm.entrypoints.openai.protocol import ErrorResponse
def register_sagemaker_routes(router: APIRouter):
@router.post("/ping", response_class=Response)
@router.get("/ping", response_class=Response)
@sagemaker_standards.register_ping_handler
async def ping(raw_request: Request) -> Response:
"""Ping check. Endpoint required for SageMaker"""
return await health(raw_request)
@router.post(
"/invocations",
dependencies=[Depends(validate_json_request)],
responses={
HTTPStatus.BAD_REQUEST.value: {"model": ErrorResponse},
HTTPStatus.UNSUPPORTED_MEDIA_TYPE.value: {"model": ErrorResponse},
HTTPStatus.INTERNAL_SERVER_ERROR.value: {"model": ErrorResponse},
},
)
@sagemaker_standards.register_invocation_handler
@sagemaker_standards.stateful_session_manager()
@sagemaker_standards.inject_adapter_id(adapter_path="model")
async def invocations(raw_request: Request):
"""For SageMaker, routes requests based on the request type."""
try:
body = await raw_request.json()
except json.JSONDecodeError as e:
raise HTTPException(
status_code=HTTPStatus.BAD_REQUEST.value,
detail=f"JSON decode error: {e}",
) from e
valid_endpoints = [
(validator, endpoint)
for validator, (get_handler, endpoint) in INVOCATION_VALIDATORS
if get_handler(raw_request) is not None
]
for request_validator, endpoint in valid_endpoints:
try:
request = request_validator.validate_python(body)
except pydantic.ValidationError:
continue
return await endpoint(request, raw_request)
type_names = [
t.__name__ if isinstance(t := validator._type, type) else str(t)
for validator, _ in valid_endpoints
]
msg = f"Cannot find suitable handler for request. Expected one of: {type_names}"
res = base(raw_request).create_error_response(message=msg)
return JSONResponse(content=res.model_dump(), status_code=res.error.code)
return router