mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 22:25:32 +08:00
[CI/Build] Delete ultravox LoRA test (#14730)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
parent
55211b01e8
commit
bd44b812cb
@ -1,131 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import shutil
|
||||
from os import path
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
from safetensors.torch import load_file, save_file
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
from ..models.utils import check_outputs_equal
|
||||
|
||||
ULTRAVOX_MODEL_NAME = "fixie-ai/ultravox-v0_3"
|
||||
LLMA_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
VLLM_PLACEHOLDER = "<|reserved_special_token_0|>"
|
||||
|
||||
PROMPT = "Tell me about a Fool's mate move in 20 words. Provide the moves!"
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def v1(run_with_both_engines_lora):
|
||||
# Simple autouse wrapper to run both engines for each test
|
||||
# This can be promoted up to conftest.py to run for every
|
||||
# test in a package
|
||||
pass
|
||||
|
||||
|
||||
def llama3_1_8b_chess_lora_path():
|
||||
return snapshot_download(
|
||||
repo_id="mkopecki/chess-lora-adapter-llama-3.1-8b")
|
||||
|
||||
|
||||
# can't use llama lora adapter without module name transformation
|
||||
# because ultravox nest language model
|
||||
def transform_module_names_for_ultravox(state_dict):
|
||||
transformed_state_dict = {}
|
||||
for key, value in state_dict.items():
|
||||
new_key = key.replace("base_model.model",
|
||||
"base_model.model.language_model")
|
||||
transformed_state_dict[new_key] = value
|
||||
return transformed_state_dict
|
||||
|
||||
|
||||
def mk_llama3_1_8b_ultravox_chess_lora(source_repo, target_path):
|
||||
tensor_file = "adapter_model.safetensors"
|
||||
state_dict = load_file(path.join(source_repo, tensor_file))
|
||||
transformed_state_dict = transform_module_names_for_ultravox(state_dict)
|
||||
|
||||
save_file(transformed_state_dict, path.join(target_path, tensor_file))
|
||||
|
||||
config_file = "adapter_config.json"
|
||||
shutil.copyfile(path.join(source_repo, config_file),
|
||||
path.join(target_path, config_file))
|
||||
return target_path
|
||||
|
||||
|
||||
def _get_prompt(audio_count, question, placeholder, model_name) -> str:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
placeholder = f"{placeholder}\n" * audio_count
|
||||
|
||||
return tokenizer.apply_chat_template([{
|
||||
'role': 'user',
|
||||
'content': f"{placeholder}{question}"
|
||||
}],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True)
|
||||
|
||||
|
||||
def test_ultravox_lora(vllm_runner):
|
||||
"""
|
||||
TODO: Train an Ultravox LoRA instead of using a Llama LoRA.
|
||||
"""
|
||||
# Workaround to prevent device mismatch in Whisper.
|
||||
# Can be removed when it is fixed upstream in transformer
|
||||
# https://github.com/huggingface/transformers/pull/35866
|
||||
torch.set_default_device("cpu")
|
||||
|
||||
llama3_1_8b_chess_lora = llama3_1_8b_chess_lora_path()
|
||||
with TemporaryDirectory() as temp_ultravox_lora_dir:
|
||||
llama3_1_8b_ultravox_chess_lora = mk_llama3_1_8b_ultravox_chess_lora(
|
||||
llama3_1_8b_chess_lora, temp_ultravox_lora_dir)
|
||||
with vllm_runner(
|
||||
ULTRAVOX_MODEL_NAME,
|
||||
enforce_eager=True,
|
||||
max_num_seqs=2,
|
||||
enable_lora=True,
|
||||
max_loras=1,
|
||||
max_lora_rank=128,
|
||||
dtype="bfloat16",
|
||||
max_model_len=1024,
|
||||
) as vllm_model:
|
||||
ultravox_outputs: list[tuple[
|
||||
list[int], str]] = vllm_model.generate_greedy(
|
||||
[
|
||||
_get_prompt(0, PROMPT, VLLM_PLACEHOLDER,
|
||||
ULTRAVOX_MODEL_NAME)
|
||||
],
|
||||
256,
|
||||
lora_request=LoRARequest(str(1), 1,
|
||||
llama3_1_8b_ultravox_chess_lora),
|
||||
)
|
||||
|
||||
# run llama with and without lora to compare outputs with above
|
||||
with vllm_runner(
|
||||
LLMA_MODEL_NAME,
|
||||
enforce_eager=True,
|
||||
max_num_seqs=2,
|
||||
enable_lora=True,
|
||||
max_loras=1,
|
||||
max_lora_rank=128,
|
||||
dtype="bfloat16",
|
||||
max_model_len=1024,
|
||||
) as vllm_model:
|
||||
llama_outputs: list[tuple[list[int], str]] = (
|
||||
vllm_model.generate_greedy(
|
||||
[_get_prompt(0, PROMPT, VLLM_PLACEHOLDER, LLMA_MODEL_NAME)],
|
||||
256,
|
||||
lora_request=LoRARequest(str(1), 1, llama3_1_8b_chess_lora),
|
||||
))
|
||||
|
||||
check_outputs_equal(
|
||||
outputs_0_lst=ultravox_outputs,
|
||||
outputs_1_lst=llama_outputs,
|
||||
name_0="ultravox",
|
||||
name_1="llama",
|
||||
)
|
||||
Loading…
x
Reference in New Issue
Block a user