[V1] V1 engine implements parallel sampling (AsyncLLM and LLMEngine) (#10980)

Signed-off-by: Andrew Feldman <afeldman@neuralmagic.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
This commit is contained in:
afeldman-nm 2025-02-24 11:29:41 -05:00 committed by GitHub
parent 444b0f0f62
commit befc402d34
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 640 additions and 8 deletions

View File

@ -1,21 +1,114 @@
# SPDX-License-Identifier: Apache-2.0
import random
from typing import Dict, List, Optional, Tuple
import pytest
from tests.v1.engine.utils import PLP_APC_UNSUPPORTED_MSG
from vllm import LLM, SamplingParams
MODEL = "facebook/opt-125m"
DTYPE = "half"
def test_llm_engine_refuses_prompt_logprobs_with_apc(monkeypatch):
"""Test passes if LLMEngine raises an exception when it is configured
for automatic prefix caching and it receives a request with
prompt_logprobs enabled, which is incompatible."""
def _vllm_model(apc: bool, vllm_runner, monkeypatch):
"""Set up VllmRunner instance."""
monkeypatch.setenv("VLLM_USE_V1", "1")
# TODO(nick): Single-proc to work around a ZMQ shutdown hang for now.
monkeypatch.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
return vllm_runner(
MODEL,
dtype=DTYPE,
max_model_len=128,
enforce_eager=True,
enable_prefix_caching=apc,
gpu_memory_utilization=0.5,
)
@pytest.fixture(
# Function scope decouples tests & allows
# env var adjustment via monkeypatch
scope="function",
# Prefix caching
params=[False, True])
def vllm_model(vllm_runner, request, monkeypatch):
"""VllmRunner test fixture parameterized by APC True/False."""
with _vllm_model(request.param, vllm_runner, monkeypatch) as vllm_model:
yield vllm_model
@pytest.fixture(scope="function")
def vllm_model_apc(vllm_runner, monkeypatch):
"""VllmRunner test fixture with APC."""
with _vllm_model(True, vllm_runner, monkeypatch) as vllm_model:
yield vllm_model
def _get_test_sampling_params(
prompt_list: List[str],
seed: Optional[int] = 42,
) -> Tuple[List[SamplingParams], List[int]]:
"""Generate random sampling params for a batch."""
def get_mostly_n_gt1() -> int:
"""Mostly n \in [2,20], ~1/3 n=1"""
x = random.randint(0, 28)
if x < 10:
return 1
else:
return x - 8
n_list = [get_mostly_n_gt1() for _ in range(len(prompt_list))]
# High temperature to maximize the chance of unique completions
return [
SamplingParams(temperature=0.95, top_p=0.95, n=n, seed=seed)
for n in n_list
], n_list
def test_parallel_sampling(vllm_model, example_prompts) -> None:
"""Test passes if parallel sampling `n>1` yields `n` unique completions.
Args:
vllm_model: VllmRunner instance under test.
example_prompt: test fixture providing prompts for testing.
"""
sampling_params_list, n_list = _get_test_sampling_params(example_prompts)
model: LLM = vllm_model.model
outputs = model.generate(example_prompts, sampling_params_list)
# Validate each request response
for out, n in zip(outputs, n_list):
completion_counts: Dict[str, int] = {}
# Assert correct number of completions
assert len(out.outputs) == n, (
f"{len(out.outputs)} completions; {n} expected.")
for idx in range(n):
comp = out.outputs[idx]
# Assert correct completion indices
assert comp.index == idx, (f"Index {comp.index}; expected {idx}.")
text = comp.text
completion_counts[text] = completion_counts.get(text, 0) + 1
# Assert unique completions
if len(completion_counts) != n:
repeats = {
txt: num
for (txt, num) in completion_counts.items() if num > 1
}
raise AssertionError(
f"{len(completion_counts)} unique completions; expected"
f" {n}. Repeats: {repeats}")
def test_llm_engine_refuses_prompt_logprobs_with_apc(vllm_model_apc):
"""Test passes if LLMEngine raises an exception when it is configured
for automatic prefix caching and it receives a request with
prompt_logprobs enabled, which is incompatible."""
model: LLM = vllm_model_apc.model
with pytest.raises(ValueError) as excinfo:
LLM(model="facebook/opt-125m", enable_prefix_caching=True).generate(
model.generate(
"Hello, my name is",
SamplingParams(temperature=0.8, top_p=0.95, prompt_logprobs=5))

View File

@ -250,6 +250,108 @@ async def test_completion_streaming(client: openai.AsyncOpenAI,
assert "".join(chunks) == single_output
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_parallel_no_streaming(client: openai.AsyncOpenAI,
model_name: str):
"""Parallel sampling without streaming.
A single request output contains a list of completions.
"""
prompt = "What is an LLM?"
n = 3
max_tokens = 5
# High temperature to maximize chance of unique completions.
completion = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=max_tokens,
n=n,
temperature=0.95,
stream=False,
seed=42)
# Assert `n` completions
num_completions = len(completion.choices)
assert num_completions == n, (
f"Num completions {num_completions} but expected {n}.")
completion_repeats: Dict[str, int] = {}
for idx, choice in enumerate(completion.choices):
# Assert correct completion index & some finish reason.
assert choice.index == idx, (
f"Index {choice.index} but expected {idx}.")
assert choice.finish_reason is not None, (
"None finish_reason is invalid.")
text = choice.text
completion_repeats[text] = completion_repeats.get(text, 0) + 1
# Assert `n` unique completions
num_unique = len(completion_repeats)
if num_unique != n:
repeats = {
txt: num
for (txt, num) in completion_repeats.items() if num > 1
}
raise AssertionError(
f"Expected {n} unique completions, got {num_unique};"
f" repeats: {repeats}.")
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME],
)
async def test_parallel_streaming(client: openai.AsyncOpenAI, model_name: str):
"""Streaming for parallel sampling.
The tokens from multiple samples, are flattened into a single stream,
with an index to indicate which sample the token belongs to.
"""
prompt = "What is an LLM?"
n = 3
max_tokens = 5
stream = await client.completions.create(model=model_name,
prompt=prompt,
max_tokens=max_tokens,
n=n,
temperature=0.95,
stream=True,
seed=42)
chunks: List[List[str]] = [[] for i in range(n)]
finish_reason_count = 0
async for chunk in stream:
index = chunk.choices[0].index
text = chunk.choices[0].text
chunks[index].append(text)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# Assert `n` completions with correct finish reasons
assert finish_reason_count == n, (
f"Expected {n} completions with valid indices and finish_reason.")
completion_repeats: Dict[str, int] = {}
for chunk in chunks:
chunk_len = len(chunk)
# Assert correct number of completion tokens
assert chunk_len == max_tokens, (
f"max_tokens={max_tokens} but chunk len is {chunk_len}.")
text = "".join(chunk)
completion_repeats[text] = completion_repeats.get(text, 0) + 1
print(text)
# Assert `n` unique completions
num_unique = len(completion_repeats)
if num_unique != n:
repeats = {
txt: num
for (txt, num) in completion_repeats.items() if num > 1
}
raise AssertionError(f"{num_unique} unique completions, expected {n};"
f" repeats: {repeats}")
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",

View File

@ -24,6 +24,7 @@ from vllm.usage.usage_lib import UsageContext
from vllm.utils import cdiv, kill_process_tree
from vllm.v1.engine.core_client import EngineCoreClient
from vllm.v1.engine.output_processor import OutputProcessor
from vllm.v1.engine.parallel_sampling import generate_parallel_sampling_async
from vllm.v1.engine.processor import Processor
from vllm.v1.executor.abstract import Executor
from vllm.v1.metrics.loggers import (LoggingStatLogger, PrometheusStatLogger,
@ -170,7 +171,7 @@ class AsyncLLM(EngineClient):
# requests we don't need to send multiple messages to core proc,
# and so we don't need multiple streams which then get
# re-multiplexed in the API server anyhow.
async def generate(
async def _generate(
self,
prompt: PromptType,
sampling_params: SamplingParams,
@ -241,6 +242,30 @@ class AsyncLLM(EngineClient):
await self.abort(request_id)
raise
def generate(
self,
prompt: PromptType,
sampling_params: SamplingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> AsyncGenerator[RequestOutput, None]:
kwargs = dict(prompt=prompt,
sampling_params=sampling_params,
request_id=request_id,
lora_request=lora_request,
trace_headers=trace_headers,
prompt_adapter_request=prompt_adapter_request,
priority=priority)
if sampling_params.n is None or sampling_params.n == 1:
return self._generate(**kwargs)
else:
# Special handling for parallel sampling requests
return generate_parallel_sampling_async(generate=self._generate,
**kwargs)
async def _run_output_handler(self):
"""Background loop: pulls from EngineCore and pushes to AsyncStreams."""

View File

@ -21,6 +21,7 @@ from vllm.transformers_utils.tokenizer_group import (
from vllm.usage.usage_lib import UsageContext
from vllm.v1.engine.core_client import EngineCoreClient
from vllm.v1.engine.output_processor import OutputProcessor
from vllm.v1.engine.parallel_sampling import SyncParallelSamplingManager
from vllm.v1.engine.processor import Processor
from vllm.v1.executor.abstract import Executor
@ -48,6 +49,9 @@ class LLMEngine:
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
# Bookkeeping for parallel sampling requests
self.parallel_manager = SyncParallelSamplingManager()
# important: init dp group before init the engine_core
self.parallel_config = vllm_config.parallel_config
self.dp_enabled = self.parallel_config.data_parallel_size > 1 # noqa
@ -115,7 +119,8 @@ class LLMEngine:
multiprocess_mode=enable_multiprocessing)
def get_num_unfinished_requests(self) -> int:
return self.output_processor.get_num_unfinished_requests()
return self.parallel_manager.get_num_unfinished_requests(
self.output_processor.get_num_unfinished_requests())
def has_unfinished_requests(self) -> bool:
has_unfinished = self.output_processor.has_unfinished_requests()
@ -151,7 +156,36 @@ class LLMEngine:
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> None:
"""Add request."""
kwargs = dict(request_id=request_id,
prompt=prompt,
params=params,
arrival_time=arrival_time,
lora_request=lora_request,
trace_headers=trace_headers,
prompt_adapter_request=prompt_adapter_request,
priority=priority)
# Handle parallel sampling requests differently.
if params is None or isinstance(params,
PoolingParams) or params.n == 1:
self._add_request(**kwargs)
else:
# Special handling for parallel sampling requests
self.parallel_manager.add_request_parallel_sampling(
add_request=self._add_request, **kwargs)
def _add_request(
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> None:
"""Add request, `n=1`"""
# 1) Process raw inputs into the request.
request = self.processor.process_inputs(request_id, prompt, params,
arrival_time, lora_request,
@ -182,7 +216,10 @@ class LLMEngine:
# 3) Abort any reqs that finished due to stop strings.
self.engine_core.abort_requests(processed_outputs.reqs_to_abort)
return processed_outputs.request_outputs
request_outputs = processed_outputs.request_outputs
# 4) Process unfinished parallel sampling requests
return self.parallel_manager.step(request_outputs)
def get_model_config(self):
return self.model_config

View File

@ -0,0 +1,375 @@
# SPDX-License-Identifier: Apache-2.0
from copy import copy
from typing import (AsyncGenerator, Dict, List, Mapping, Optional, Protocol,
Tuple, Union)
from vllm.inputs import PromptType
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import RequestOutputKind, SamplingParams
from vllm.utils import merge_async_iterators
class AsyncGenerateMethodType(Protocol):
def __call__(self,
prompt: PromptType,
sampling_params: SamplingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0) -> AsyncGenerator[RequestOutput, None]:
...
class SyncAddRequestMethodType(Protocol):
def __call__(self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0) -> None:
...
class ParallelSamplingRequest:
"""Info, state & processing for parallel sampling request.
Store parent request ID and sampling params.
Facilitate generating child request sampling params.
Transform child request outputs into parent request
outputs.
When stream mode is disabled, then `self.request_output`
aggregates child request completions.
"""
request_id: str
sampling_params: SamplingParams
cached_child_sampling_params: Optional[SamplingParams]
request_output: Optional[RequestOutput]
num_finished_completions: int
def __init__(self, request_id: str,
sampling_params: SamplingParams) -> None:
self.request_id = request_id
self.sampling_params = sampling_params
self.cached_child_sampling_params = None
self.request_output = None
self.num_finished_completions = 0
def _get_child_sampling_params(
self,
index: int,
) -> SamplingParams:
"""Efficiently obtain child `sampling_params`
If `sampling_params.seed` is not `None` then
each child request requires a unique clone of
parent `sampling_params` with a unique seed.
Args:
index: index within `n` child requests
Returns:
Child `sampling_params` instance.
"""
seed = self.sampling_params.seed
if self.cached_child_sampling_params:
# Reuse child sampling_params data structure
return self.cached_child_sampling_params
# Build child sampling_params
child_sampling_params = copy(self.sampling_params)
child_sampling_params.n = 1
if seed is None:
# Cache child sampling_params for later reuse
self.cached_child_sampling_params = child_sampling_params
else:
# Each child gets a clone with a unique seed
child_sampling_params.seed = seed + index
return child_sampling_params
def _add_output(
self,
child_req_output: RequestOutput,
index: int,
) -> None:
"""Aggregate a parallel sampling child
request output.
Non-stream-mode (`output_kind == FINAL_ONLY`)
only. Inject correct parent request ID and
completion index.
Args:
child_req_output: a single request output
from a parallel sampling
child request.
index: index within `n` child
"""
self.num_finished_completions += 1
new_completion = child_req_output.outputs[0]
new_completion.index = index
if self.request_output is None:
# Save the first request output; reinstate
# original request ID; metrics are not
# supported for parallel sampling
child_req_output.request_id = self.request_id
child_req_output.metrics = None
self.request_output = child_req_output
else:
# Aggregate additional completion into request output
# Note: will be sorted by index later
self.request_output.outputs.append(new_completion)
def _get_final_request_output(self) -> RequestOutput:
"""Invariant: parent completion outputs sorted by index"""
assert self.request_output is not None
self.request_output.finished = True
self.request_output.outputs = sorted(self.request_output.outputs,
key=lambda x: x.index)
return self.request_output
def get_child_info(self, index: int) -> Tuple[str, SamplingParams]:
"""Get child request ID and sampling params.
Args:
index: index within `n` child requests.
Returns:
(request ID, sampling_params) tuple
"""
return (f"{index}_{self.request_id}",
self._get_child_sampling_params(index))
def process_output(
self,
child_req_output: RequestOutput,
index: int,
) -> Optional[RequestOutput]:
"""Filter, aggregate and transform parallel sampling
child request outputs.
If the parent request has `stream=false`
(`output_kind == FINAL_ONLY`), each child will also have
`output_kind == FINAL_ONLY`. All child request outputs
must be aggregated into a single request output, with
multiple completions. This request output is only returned
once `n` completions are aggregated.
If the parent request has `stream=true`
(`output_kind == DELTA`), each child will also have
`output_kind == DELTA`. All child request outputs
must be streamed directly to the caller.
Args:
child_req_output: a single child request output
index: index within `n` child requests
Returns:
`None`, unless a processed request output is ready to
send back to the caller.
"""
if self.output_kind != RequestOutputKind.FINAL_ONLY:
# stream=true: return child completions immediately
child_req_output.request_id = self.request_id
child_req_output.outputs[0].index = index
if child_req_output.finished:
# Parent request is complete if all child requests are
# complete.
self.num_finished_completions += 1
child_req_output.finished = (
self.num_finished_completions == self.n)
return child_req_output
# stream=false: aggregate child completions
self._add_output(child_req_output, index)
if self.num_finished_completions == self.n:
# Return aggregated request output after obtaining
# all completions
return self._get_final_request_output()
return None
async def wrap_child_async_generator(
self,
child_gen: AsyncGenerator[RequestOutput, None],
index: int,
) -> AsyncGenerator[RequestOutput, None]:
"""Output generator for a single parallel sampling
child request.
Each parallel sampling request triggers at
least two child requests. This generator
yields zero or more request outputs to
return to the caller, as they become
available.
Args:
child_gen: generator for child request
outputs.
index: index within the `n` child requests
Returns:
Yields zero or more request outputs to return
to the caller.
"""
async for out in child_gen:
if req_out := self.process_output(out, index):
yield req_out
@property
def n(self) -> int:
return self.sampling_params.n
@property
def output_kind(self) -> RequestOutputKind:
return self.sampling_params.output_kind
class SyncParallelSamplingManager:
def __init__(self):
# Parent req ID -> parent request manager
self.parent_reqs: Dict[str, ParallelSamplingRequest] = {}
# Child req ID -> (child req index, parent req ID)
self.child_reqs: Dict[str, Tuple[int, str]] = {}
def _register_parent_request(self, req: ParallelSamplingRequest) -> None:
"""Register parallel sampling parent request."""
self.parent_reqs[req.request_id] = req
def _register_child_request(self, req_id: str, child_req_id: str,
index: int) -> None:
"""Register parallel sampling child request with parent.
Args:
req_id: parent request ID
child_req_id: child request ID
index: child request index within `n` child requests
"""
self.child_reqs[child_req_id] = (index, req_id)
def get_num_unfinished_requests(self, num_core_reqs: int) -> int:
"""Get the number of unfinished requests, correcting for parallel
sampling.
Args:
num_core_reqs: The number of unfinished requests in the engine core.
Returns:
Number of unfinished requests, where each parallel sampling req
counts as 1
"""
return num_core_reqs + len(self.parent_reqs) - len(self.child_reqs)
def add_request_parallel_sampling(
self,
add_request: SyncAddRequestMethodType,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> None:
"""Add sync parallel sampling request."""
req = ParallelSamplingRequest(request_id, params)
self._register_parent_request(req)
# Add n child requests with unique request IDs & random seeds and n=1
for idx in range(req.n):
child_req_id, child_params = req.get_child_info(idx)
self._register_child_request(request_id, child_req_id, idx)
add_request(request_id=child_req_id,
prompt=prompt,
params=child_params,
arrival_time=arrival_time,
lora_request=lora_request,
trace_headers=trace_headers,
prompt_adapter_request=prompt_adapter_request,
priority=priority) # type: ignore
def step(
self,
outputs: List[RequestOutput],
) -> List[RequestOutput]:
"""Build parallel sampling request outputs.
Extract child request outputs, aggregate them
into parent request output, and return parent
output when complete.
Do not modify `n=1` requests.
Args:
outputs: step request outputs. Mix of child request
outputs & `n=1` request outputs.
Return:
List of parallel sampling parent request outputs &
unmodified `n=1` request outputs passed-thru from input.
"""
if not (self.parent_reqs and outputs):
# Return unmodified
return outputs
agg_outputs = []
for output in outputs:
req_id = output.request_id
if child_req_entry := self.child_reqs.get(req_id, None):
# For each parallel sampling child request output:
(index, parent_req_id) = child_req_entry
req = self.parent_reqs[parent_req_id]
# Update parallel sampling request
if out := req.process_output(output, index):
# Return parent request output if complete;
# cleanup parent request bookkeeping.
agg_outputs.append(out)
del self.parent_reqs[parent_req_id]
# Cleanup child request bookkeeping.
del self.child_reqs[req_id]
else:
# Not a parallel sampling request output
agg_outputs.append(output)
return agg_outputs
async def generate_parallel_sampling_async(
generate: AsyncGenerateMethodType,
prompt: PromptType,
sampling_params: SamplingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> AsyncGenerator[RequestOutput, None]:
"""Generate completions for async parallel sampling requests."""
parent_req = ParallelSamplingRequest(request_id, sampling_params)
# Aggregate generators for n child requests
gens: List[AsyncGenerator[RequestOutput, None]] = []
for idx in range(parent_req.n):
child_req_id, child_params = parent_req.get_child_info(idx)
child_gen = generate(
prompt=prompt,
sampling_params=child_params,
request_id=child_req_id,
lora_request=lora_request,
trace_headers=trace_headers,
prompt_adapter_request=prompt_adapter_request,
priority=priority,
) # type: ignore
gen = parent_req.wrap_child_async_generator(child_gen, idx)
gens.append(gen)
# Merge generators
async for _, out in merge_async_iterators(*gens):
yield out