mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-25 20:15:19 +08:00
[Model] Add support for GraniteMoeShared models (#13313)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
parent
79e4937c65
commit
c060b71408
@ -298,6 +298,11 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
* `ibm-granite/granite-3.0-1b-a400m-base`, `ibm-granite/granite-3.0-3b-a800m-instruct`, `ibm/PowerMoE-3b`, etc.
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `GraniteMoeSharedForCausalLM`
|
||||
* Granite MoE Shared
|
||||
* `ibm-research/moe-7b-1b-active-shared-experts` (test model)
|
||||
* ✅︎
|
||||
* ✅︎
|
||||
- * `GritLM`
|
||||
* GritLM
|
||||
* `parasail-ai/GritLM-7B-vllm`.
|
||||
|
||||
@ -131,6 +131,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"GPTNeoXForCausalLM": _HfExamplesInfo("EleutherAI/pythia-160m"),
|
||||
"GraniteForCausalLM": _HfExamplesInfo("ibm/PowerLM-3b"),
|
||||
"GraniteMoeForCausalLM": _HfExamplesInfo("ibm/PowerMoE-3b"),
|
||||
"GraniteMoeSharedForCausalLM": _HfExamplesInfo("ibm-research/moe-7b-1b-active-shared-experts", # noqa: E501
|
||||
min_transformers_version="4.49"), # noqa: E501
|
||||
"Grok1ModelForCausalLM": _HfExamplesInfo("hpcai-tech/grok-1",
|
||||
trust_remote_code=True),
|
||||
"InternLMForCausalLM": _HfExamplesInfo("internlm/internlm-chat-7b",
|
||||
|
||||
343
vllm/model_executor/models/granitemoeshared.py
Normal file
343
vllm/model_executor/models/granitemoeshared.py
Normal file
@ -0,0 +1,343 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""Inference-only GraniteMoeShared model.
|
||||
|
||||
The architecture is the same as granitemoe but with the addition of shared
|
||||
experts.
|
||||
"""
|
||||
from typing import Iterable, Optional, Set, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers.models.granitemoeshared import GraniteMoeSharedConfig
|
||||
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import get_pp_group
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from . import mixtral
|
||||
from .granitemoe import GraniteMoeAttention, GraniteMoeMoE
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .utils import make_layers, maybe_prefix
|
||||
|
||||
|
||||
class GraniteMoeSharedMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: GraniteMoeSharedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.input_size = config.hidden_size
|
||||
self.hidden_size = config.shared_intermediate_size
|
||||
self.input_linear = MergedColumnParallelLinear(
|
||||
input_size=self.input_size,
|
||||
output_sizes=[self.hidden_size] * 2,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.input_linear")
|
||||
self.output_linear = RowParallelLinear(
|
||||
self.hidden_size,
|
||||
self.input_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.output_linear")
|
||||
if config.hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {config.hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states, _ = self.input_linear(hidden_states)
|
||||
hidden_states = self.act_fn(hidden_states)
|
||||
hidden_states, _ = self.output_linear(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GraniteMoeSharedDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: GraniteMoeSharedConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Requires transformers > 4.32.0
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
self.self_attn = GraniteMoeAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
attention_multiplier=config.attention_multiplier)
|
||||
self.block_sparse_moe = GraniteMoeMoE(
|
||||
num_experts=config.num_local_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.block_sparse_moe")
|
||||
self.shared_mlp = None if \
|
||||
getattr(config, 'shared_intermediate_size', 0) == 0 \
|
||||
else GraniteMoeSharedMLP(
|
||||
config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.shared_mlp"
|
||||
)
|
||||
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
self.residual_multiplier = config.residual_multiplier
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
)
|
||||
hidden_states = residual + hidden_states * self.residual_multiplier
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
if self.shared_mlp is None:
|
||||
hidden_states = self.block_sparse_moe(hidden_states)
|
||||
else:
|
||||
# create a copy since block_sparse_moe modifies in-place
|
||||
moe_hidden_states = hidden_states.clone()
|
||||
moe_hidden_states = self.block_sparse_moe(moe_hidden_states)
|
||||
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
|
||||
del moe_hidden_states
|
||||
hidden_states = residual + hidden_states * self.residual_multiplier
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class GraniteMoeSharedModel(nn.Module):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.padding_idx = config.pad_token_id
|
||||
lora_vocab = (lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
self.org_vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.embedding_multiplier = config.embedding_multiplier
|
||||
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: GraniteMoeSharedDecoderLayer(
|
||||
config, cache_config, quant_config=quant_config, prefix=prefix
|
||||
),
|
||||
prefix=f"{prefix}.layers")
|
||||
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.embed_tokens(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors],
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
hidden_states *= self.embedding_multiplier
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(positions, hidden_states)
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GraniteMoeSharedForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
fall_back_to_pt_during_load = False
|
||||
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
}
|
||||
|
||||
# LoRA specific attributes
|
||||
embedding_modules = {
|
||||
"embed_tokens": "input_embeddings",
|
||||
"lm_head": "output_embeddings",
|
||||
}
|
||||
embedding_padding_modules = ["lm_head"]
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
self.quant_config = quant_config
|
||||
|
||||
self.model = GraniteMoeSharedModel(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "model"))
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
||||
# We need bigger padding if using lora for kernel
|
||||
# compatibility
|
||||
if not lora_config else lora_config.lora_vocab_padding_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "lm_head"))
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.model.embed_tokens.weight
|
||||
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size,
|
||||
scale=1 /
|
||||
self.config.logits_scaling)
|
||||
|
||||
self.sampler = get_sampler()
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
self, batch_size: int, dtype: torch.dtype,
|
||||
device: torch.device) -> IntermediateTensors:
|
||||
return IntermediateTensors({
|
||||
"hidden_states":
|
||||
torch.zeros((batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device),
|
||||
"residual":
|
||||
torch.zeros((batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device),
|
||||
})
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str,
|
||||
torch.Tensor]]) -> Set[str]:
|
||||
new_weights = {}
|
||||
for n, p in weights:
|
||||
if n.endswith('.block_sparse_moe.input_linear.weight'):
|
||||
for e in range(p.size(0)):
|
||||
w1_name = n.replace(
|
||||
'.block_sparse_moe.input_linear.weight',
|
||||
f".block_sparse_moe.experts.{e}.w1.weight")
|
||||
w3_name = n.replace(
|
||||
'.block_sparse_moe.input_linear.weight',
|
||||
f".block_sparse_moe.experts.{e}.w3.weight")
|
||||
w1_param, w3_param = p[e].chunk(2, dim=0)
|
||||
assert w1_name not in new_weights
|
||||
assert w3_name not in new_weights
|
||||
new_weights[w1_name] = w1_param
|
||||
new_weights[w3_name] = w3_param
|
||||
elif n.endswith('.block_sparse_moe.output_linear.weight'):
|
||||
for e in range(p.size(0)):
|
||||
w2_name = n.replace(
|
||||
'.block_sparse_moe.output_linear.weight',
|
||||
f".block_sparse_moe.experts.{e}.w2.weight")
|
||||
w2_param = p[e]
|
||||
assert w2_name not in new_weights
|
||||
new_weights[w2_name] = w2_param
|
||||
elif n.endswith('.block_sparse_moe.router.layer.weight'):
|
||||
gate_name = n.replace('.block_sparse_moe.router.layer.weight',
|
||||
".block_sparse_moe.gate.weight")
|
||||
assert gate_name not in new_weights
|
||||
new_weights[gate_name] = p
|
||||
elif n == 'lm_head.weight' and self.config.tie_word_embeddings:
|
||||
pass
|
||||
else:
|
||||
new_weights[n] = p
|
||||
return mixtral.MixtralForCausalLM.load_weights(self,
|
||||
new_weights.items())
|
||||
@ -60,6 +60,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
|
||||
"GraniteForCausalLM": ("granite", "GraniteForCausalLM"),
|
||||
"GraniteMoeForCausalLM": ("granitemoe", "GraniteMoeForCausalLM"),
|
||||
"GraniteMoeSharedForCausalLM": ("granitemoeshared", "GraniteMoeSharedForCausalLM"), # noqa: E501
|
||||
"GritLM": ("gritlm", "GritLM"),
|
||||
"Grok1ModelForCausalLM": ("grok1", "Grok1ForCausalLM"),
|
||||
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user