[Quantization] Add compressed-tensors NVFP4 support (#18312)

This commit is contained in:
Dipika Sikka 2025-06-08 06:05:55 -07:00 committed by GitHub
parent b9a1791e2c
commit c123bc33f9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 267 additions and 16 deletions

View File

@ -14,9 +14,10 @@ from compressed_tensors.quantization import QuantizationType
from tests.models.utils import check_logprobs_close
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
CompressedTensors24, CompressedTensorsLinearMethod,
CompressedTensorsW4A16Fp4, CompressedTensorsW4A16Sparse24,
CompressedTensorsW8A8Fp8, CompressedTensorsW8A8Int8,
CompressedTensorsW8A16Fp8, CompressedTensorsWNA16)
CompressedTensorsW4A4Fp4, CompressedTensorsW4A16Fp4,
CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8Fp8,
CompressedTensorsW8A8Int8, CompressedTensorsW8A16Fp8,
CompressedTensorsWNA16)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
sparse_cutlass_supported)
from vllm.platforms import current_platform
@ -651,9 +652,13 @@ def test_compressed_tensors_2of4_sparse_compressed(vllm_runner, args_2of4):
assert output
def test_compressed_tensors_nvfp4a16(vllm_runner):
# run weight only example
model = "nm-testing/TinyLlama-1.1B-Chat-v1.0-NVFP4A16"
@pytest.mark.parametrize(
"args",
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-NVFP4A16",
CompressedTensorsW4A16Fp4),
("nm-testing/TinyLlama-1.1B-Chat-v1.0-NVFP4", CompressedTensorsW4A4Fp4)])
def test_compressed_tensors_nvfp4(vllm_runner, args):
model, scheme = args
with vllm_runner(model, enforce_eager=True) as llm:
def check_model(model):
@ -662,7 +667,7 @@ def test_compressed_tensors_nvfp4a16(vllm_runner):
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Fp4)
assert isinstance(qkv_proj.scheme, scheme)
assert qkv_proj.scheme.group_size == 16
llm.apply_model(check_model)

View File

@ -24,10 +24,10 @@ from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tenso
CompressedTensorsMoEMethod)
from vllm.model_executor.layers.quantization.compressed_tensors.schemes import (
W4A16SPARSE24_SUPPORTED_BITS, WNA16_SUPPORTED_BITS, CompressedTensors24,
CompressedTensorsScheme, CompressedTensorsW4A16Fp4,
CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8Fp8,
CompressedTensorsW8A8Int8, CompressedTensorsW8A16Fp8,
CompressedTensorsWNA16)
CompressedTensorsScheme, CompressedTensorsW4A4Fp4,
CompressedTensorsW4A16Fp4, CompressedTensorsW4A16Sparse24,
CompressedTensorsW8A8Fp8, CompressedTensorsW8A8Int8,
CompressedTensorsW8A16Fp8, CompressedTensorsWNA16)
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
find_matched_target, is_activation_quantization_format,
should_ignore_layer)
@ -218,6 +218,26 @@ class CompressedTensorsConfig(QuantizationConfig):
else:
return False
def _is_fp4a4_nvfp4(self, weight_quant: BaseModel, input_quant: BaseModel):
if weight_quant is None or input_quant is None:
return False
is_tensor_group_quant = (weight_quant.strategy
== QuantizationStrategy.TENSOR_GROUP.value
and input_quant.strategy
== QuantizationStrategy.TENSOR_GROUP.value)
is_symmetric = weight_quant.symmetric and input_quant.symmetric
is_group_size_16 = (weight_quant.group_size == 16
and input_quant.group_size == 16)
is_float_type = (weight_quant.type == QuantizationType.FLOAT
and input_quant.type == QuantizationType.FLOAT.value)
is_4_bits = weight_quant.num_bits == 4 and input_quant.num_bits == 4
return (is_tensor_group_quant and is_float_type and is_4_bits
and is_group_size_16 and is_symmetric)
def _is_fp4a16_nvfp4(self, weight_quant: BaseModel,
input_quant: BaseModel):
@ -353,6 +373,9 @@ class CompressedTensorsConfig(QuantizationConfig):
actorder=weight_quant.actorder)
if is_activation_quantization_format(self.quant_format):
if self._is_fp4a4_nvfp4(weight_quant, input_quant):
return CompressedTensorsW4A4Fp4()
if self._is_fp8_w8a8(weight_quant, input_quant):
is_fp8_w8a8_supported = self._check_scheme_supported(
CompressedTensorsW8A8Fp8.get_min_capability(), error=False)

View File

@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from .compressed_tensors_scheme import CompressedTensorsScheme
from .compressed_tensors_w4a4_nvfp4 import CompressedTensorsW4A4Fp4
from .compressed_tensors_w4a16_24 import (W4A16SPARSE24_SUPPORTED_BITS,
CompressedTensorsW4A16Sparse24)
from .compressed_tensors_w4a16_nvfp4 import CompressedTensorsW4A16Fp4
@ -18,5 +19,6 @@ __all__ = [
"CompressedTensorsW8A16Fp8", "CompressedTensorsW4A16Sparse24",
"CompressedTensorsW8A8Int8", "CompressedTensorsW8A8Fp8",
"WNA16_SUPPORTED_BITS", "W4A16SPARSE24_SUPPORTED_BITS",
"CompressedTensors24", "CompressedTensorsW4A16Fp4"
"CompressedTensors24", "CompressedTensorsW4A16Fp4",
"CompressedTensorsW4A4Fp4"
]

View File

@ -0,0 +1,178 @@
# SPDX-License-Identifier: Apache-2.0
from typing import Callable, Optional
import torch
from torch.nn.parameter import Parameter
from vllm._custom_ops import (cutlass_scaled_fp4_mm,
cutlass_scaled_mm_supports_fp4, scaled_fp4_quant)
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.compressed_tensors.schemes import (
CompressedTensorsScheme)
from vllm.model_executor.layers.quantization.utils.nvfp4_emulation_utils import ( # noqa: E501
dequantize_to_dtype, ref_nvfp4_quant)
from vllm.model_executor.parameter import (GroupQuantScaleParameter,
ModelWeightParameter,
PerTensorScaleParameter)
from vllm.platforms import current_platform
logger = init_logger(__name__)
__all__ = ["CompressedTensorsW4A4Fp4"]
def cutlass_fp4_supported() -> bool:
if not current_platform.is_cuda():
return False
capability_tuple = current_platform.get_device_capability()
capability = -1 if capability_tuple is None else capability_tuple.to_int()
return cutlass_scaled_mm_supports_fp4(capability)
class CompressedTensorsW4A4Fp4(CompressedTensorsScheme):
def __init__(self):
self.group_size = 16
self.cutlass_nvfp4_supported = cutlass_fp4_supported()
if not self.cutlass_nvfp4_supported:
logger.warning("Current platform does not support cutlass NVFP4."
" Running emulations.")
@classmethod
def get_min_capability(cls) -> int:
# dont restrict as emulations
return 80
def run_nvfp4_emulations(self, x: torch.Tensor, layer):
x_m, x_k = x.shape
output_dtype = x.dtype
# quantize input to (FP4 and interleaved block scale)
x_fp4, x_blockscale = ref_nvfp4_quant(x, layer.input_global_scale,
self.group_size)
# dequantize input
x_fp4 = x_fp4.reshape(x_m, x_k // self.group_size, self.group_size)
x_blockscale = x_blockscale.unsqueeze(-1) / layer.input_global_scale
x_dq = (x_fp4 * x_blockscale).reshape(x_m, x_k).to(output_dtype)
del x_fp4, x_blockscale
# dequantize weight
w_fp4 = layer.weight.data.view(torch.uint8)
w_blockscale = layer.weight_scale_swizzled.data
w_global_scale = layer.weight_global_scale
w_dq = dequantize_to_dtype(w_fp4, w_blockscale, w_global_scale,
output_dtype, x.device, self.group_size)
# matmul
out = torch.matmul(x_dq, w_dq.t())
del w_dq, x_dq
return out
def create_weights(self, layer: torch.nn.Module,
output_partition_sizes: list[int],
input_size_per_partition: int,
params_dtype: torch.dtype, weight_loader: Callable,
**kwargs):
output_size_per_partition = sum(output_partition_sizes)
layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
# Weight
weight = ModelWeightParameter(data=torch.empty(
sum(output_partition_sizes),
input_size_per_partition // 2,
dtype=torch.uint8),
input_dim=1,
output_dim=0,
weight_loader=weight_loader)
layer.register_parameter("weight_packed", weight)
# Global Weight Scale
weight_global_scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader)
layer.register_parameter("weight_global_scale", weight_global_scale)
# Per Group Weight Scale
weight_scale = GroupQuantScaleParameter(data=torch.empty(
sum(output_partition_sizes),
input_size_per_partition // self.group_size,
dtype=torch.float8_e4m3fn,
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader)
layer.register_parameter("weight_scale", weight_scale)
input_global_scale = PerTensorScaleParameter(
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
weight_loader=weight_loader)
layer.register_parameter("input_global_scale", input_global_scale)
def swizzle_blockscale(self, scale: torch.tensor):
assert (scale.dtype == torch.float8_e4m3fn)
# Pad and blockwise interleave weight_scale
scale_ndim = scale.ndim
if scale.ndim == 2:
scale = scale.unsqueeze(0)
assert scale.ndim == 3
B, M, K = scale.shape
round_up_multiple = lambda x, m: (x + m - 1) // m * m
M_padded = round_up_multiple(M, 128)
K_padded = round_up_multiple(K, 4)
padded_scale = torch.zeros((B, M_padded, K_padded), dtype=scale.dtype)
padded_scale[:B, :M, :K] = scale
batches, rows, cols = padded_scale.shape
assert rows % 128 == 0
assert cols % 4 == 0
padded_scale = padded_scale.reshape(batches, rows // 128, 4, 32,
cols // 4, 4)
swizzled_scale = padded_scale.permute((0, 1, 4, 3, 2, 5))
swizzled_scale = swizzled_scale.contiguous().cuda()
return (swizzled_scale.reshape(M, K)
if scale_ndim == 2 else swizzled_scale.reshape(B, M, K))
def process_weights_after_loading(self, layer) -> None:
global_input_scale = layer.input_global_scale.max().to(torch.float32)
layer.input_global_scale = Parameter(global_input_scale,
requires_grad=False)
layer.weight_global_scale = Parameter(
layer.weight_global_scale.max().to(torch.float32),
requires_grad=False)
swizzled_weight_scale = self.swizzle_blockscale(layer.weight_scale)
layer.weight_scale_swizzled = Parameter(swizzled_weight_scale,
requires_grad=False)
# required by cutlass kernel; need Parameter, not ModelWeightParameter
layer.weight = Parameter(layer.weight_packed.data, requires_grad=False)
if self.cutlass_nvfp4_supported:
layer.alpha = Parameter(layer.input_global_scale *
layer.weight_global_scale,
requires_grad=False)
def apply_weights(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.cutlass_nvfp4_supported:
output_dtype = x.dtype
output_shape = [x.shape[0], layer.weight.shape[0]]
# quantize BF16 or FP16 to (FP4 and interleaved block scale)
x_fp4, x_blockscale = scaled_fp4_quant(x, layer.input_global_scale)
out = cutlass_scaled_fp4_mm(x_fp4, layer.weight, x_blockscale,
layer.weight_scale_swizzled,
1 / layer.alpha, output_dtype)
if bias is not None:
out = out + bias
return out.view(*output_shape)
return self.run_nvfp4_emulations(x, layer)

View File

@ -15,6 +15,7 @@ def is_activation_quantization_format(format: str) -> bool:
CompressionFormat.naive_quantized.value,
CompressionFormat.int_quantized.value,
CompressionFormat.float_quantized.value,
CompressionFormat.nvfp4_pack_quantized.value
]
return format in _ACTIVATION_QUANTIZATION_FORMATS

View File

@ -2,10 +2,11 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
__all__ = [
"break_fp4_bytes",
"dequantize_to_dtype",
]
from vllm.scalar_type import scalar_types
__all__ = ["break_fp4_bytes", "dequantize_to_dtype", "ref_nvfp4_quant"]
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
kE2M1ToFloat = torch.tensor([0., 0.5, 1., 1.5, 2., 3., 4., 6.],
dtype=torch.float32)
@ -60,3 +61,44 @@ def dequantize_to_dtype(tensor_fp4,
# scale the tensor
out = (tensor_f32 * tensor_sf_dtype.unsqueeze(-1)).reshape(m, k)
return out.to(dtype)
def get_reciprocal(x):
if isinstance(x, torch.Tensor):
return torch.where(x == 0, torch.tensor(0.0, dtype=x.dtype), 1.0 / x)
elif isinstance(x, (float, int)):
return 0.0 if x == 0 else 1.0 / x
else:
raise TypeError("Input must be a float, int, or a torch.Tensor.")
def cast_to_fp4(x):
sign = torch.sign(x)
x = torch.abs(x)
x[(x >= 0.0) & (x <= 0.25)] = 0.0
x[(x > 0.25) & (x < 0.75)] = 0.5
x[(x >= 0.75) & (x <= 1.25)] = 1.0
x[(x > 1.25) & (x < 1.75)] = 1.5
x[(x >= 1.75) & (x <= 2.5)] = 2.0
x[(x > 2.5) & (x < 3.5)] = 3.0
x[(x >= 3.5) & (x <= 5.0)] = 4.0
x[x > 5.0] = 6.0
return x * sign
def ref_nvfp4_quant(x, global_scale, block_size):
assert global_scale.dtype == torch.float32
assert x.ndim == 2
m, n = x.shape
x = torch.reshape(x, (m, n // block_size, block_size))
vec_max = torch.max(torch.abs(x), dim=-1,
keepdim=True)[0].to(torch.float32)
scale = global_scale * (vec_max * get_reciprocal(FLOAT4_E2M1_MAX))
scale = torch.clamp(scale, max=448, min=-448)
scale = scale.to(torch.float8_e4m3fn).to(torch.float32)
output_scale = get_reciprocal(scale * get_reciprocal(global_scale))
scaled_x = x.to(torch.float32) * output_scale
clipped_x = torch.clamp(scaled_x, -6.0, 6.0).reshape(m, n)
# both outputs are float32
return cast_to_fp4(clipped_x), scale.squeeze(-1)