mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-16 06:15:02 +08:00
Migrate Mistral3ImagePixelInputs to TensorSchema (#21945)
Signed-off-by: Benji Beck <benjibeck@meta.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
parent
dfd2382039
commit
c4477f55e5
@ -3,7 +3,7 @@
|
||||
|
||||
from abc import abstractmethod
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from typing import (Final, Literal, Optional, Protocol, TypedDict, TypeVar,
|
||||
from typing import (Annotated, Final, Literal, Optional, Protocol, TypeVar,
|
||||
Union)
|
||||
|
||||
import torch
|
||||
@ -32,6 +32,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
PromptUpdateDetails)
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
|
||||
SupportsMultiModal, SupportsPP)
|
||||
@ -42,15 +43,23 @@ from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
|
||||
from .vision import get_vision_encoder_info
|
||||
|
||||
|
||||
class Mistral3ImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values_pixtral"]
|
||||
pixel_values: Union[torch.Tensor, list[torch.Tensor]]
|
||||
class Mistral3ImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- c: Number of channels (3)
|
||||
- h: Height of each image
|
||||
- w: Width of each image
|
||||
"""
|
||||
Shape: `(batch_size * num_images, num_channels, height, width)`
|
||||
|
||||
Note that `height` or `width` may be different per batch and image,
|
||||
in which case the data is passed as a list instead of a batched tensor.
|
||||
"""
|
||||
type: Literal["pixel_values_pixtral"] = "pixel_values_pixtral"
|
||||
|
||||
# Note that `height` or `width` may be different per batch and image,
|
||||
# in which case the data is passed as a list instead of a batched tensor.
|
||||
pixel_values: Annotated[
|
||||
Union[torch.Tensor, list[torch.Tensor]],
|
||||
TensorShape("bn", 3, "h", "w", dynamic_dims={"h", "w"}),
|
||||
]
|
||||
|
||||
|
||||
class Mistral3PatchMerger(nn.Module):
|
||||
@ -456,19 +465,6 @@ class Mistral3ForConditionalGeneration(nn.Module, SupportsLoRA,
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.language_model.make_empty_intermediate_tensors)
|
||||
|
||||
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
||||
h = w = self.config.vision_config.image_size
|
||||
expected_dims = (3, h, w)
|
||||
actual_dims = tuple(data.shape[1:])
|
||||
|
||||
if actual_dims != expected_dims:
|
||||
expected_expr = ("batch_size", *map(str, expected_dims))
|
||||
raise ValueError(
|
||||
f"The expected shape of pixel values is {expected_expr}. "
|
||||
f"You supplied {tuple(data.shape)}.")
|
||||
|
||||
return data
|
||||
|
||||
def _parse_and_validate_image_input(
|
||||
self, **kwargs: object) -> Optional[Mistral3ImagePixelInputs]:
|
||||
pixel_values = kwargs.pop("pixel_values", None)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user