[Frontend]: Support base64 embedding (#5935)

Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
llmpros 2024-06-30 08:53:00 -07:00 committed by GitHub
parent 2be6955a3f
commit c6c240aa0a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 47 additions and 14 deletions

View File

@ -1,3 +1,6 @@
import base64
import numpy as np
import openai
import pytest
import ray
@ -109,3 +112,33 @@ async def test_batch_embedding(embedding_client: openai.AsyncOpenAI,
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 17
assert embeddings.usage.total_tokens == 17
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_batch_base64_embedding(embedding_client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models"
]
responses_float = await embedding_client.embeddings.create(
input=input_texts, model=model_name, encoding_format="float")
responses_base64 = await embedding_client.embeddings.create(
input=input_texts, model=model_name, encoding_format="base64")
decoded_responses_base64_data = []
for data in responses_base64.data:
decoded_responses_base64_data.append(
np.frombuffer(base64.b64decode(data.embedding),
dtype="float").tolist())
assert responses_float.data[0].embedding == decoded_responses_base64_data[
0]
assert responses_float.data[1].embedding == decoded_responses_base64_data[
1]

View File

@ -580,7 +580,7 @@ class CompletionStreamResponse(OpenAIBaseModel):
class EmbeddingResponseData(BaseModel):
index: int
object: str = "embedding"
embedding: List[float]
embedding: Union[List[float], str]
class EmbeddingResponse(BaseModel):

View File

@ -1,6 +1,8 @@
import base64
import time
from typing import AsyncIterator, List, Optional, Tuple
import numpy as np
from fastapi import Request
from vllm.config import ModelConfig
@ -20,19 +22,18 @@ TypeTokenIDs = List[int]
def request_output_to_embedding_response(
final_res_batch: List[EmbeddingRequestOutput],
request_id: str,
created_time: int,
model_name: str,
) -> EmbeddingResponse:
final_res_batch: List[EmbeddingRequestOutput], request_id: str,
created_time: int, model_name: str,
encoding_format: str) -> EmbeddingResponse:
data: List[EmbeddingResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
assert final_res is not None
prompt_token_ids = final_res.prompt_token_ids
embedding_data = EmbeddingResponseData(
index=idx, embedding=final_res.outputs.embedding)
embedding = final_res.outputs.embedding
if encoding_format == "base64":
embedding = base64.b64encode(np.array(embedding))
embedding_data = EmbeddingResponseData(index=idx, embedding=embedding)
data.append(embedding_data)
num_prompt_tokens += len(prompt_token_ids)
@ -72,10 +73,8 @@ class OpenAIServingEmbedding(OpenAIServing):
if error_check_ret is not None:
return error_check_ret
# Return error for unsupported features.
if request.encoding_format == "base64":
return self.create_error_response(
"base64 encoding is not currently supported")
encoding_format = (request.encoding_format
if request.encoding_format else "float")
if request.dimensions is not None:
return self.create_error_response(
"dimensions is currently not supported")
@ -129,7 +128,8 @@ class OpenAIServingEmbedding(OpenAIServing):
return self.create_error_response("Client disconnected")
final_res_batch[i] = res
response = request_output_to_embedding_response(
final_res_batch, request_id, created_time, model_name)
final_res_batch, request_id, created_time, model_name,
encoding_format)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))