diff --git a/tests/models/multimodal/generation/test_whisper.py b/tests/models/multimodal/generation/test_whisper.py index 8c99b6b4690a9..592862c2a0bb0 100644 --- a/tests/models/multimodal/generation/test_whisper.py +++ b/tests/models/multimodal/generation/test_whisper.py @@ -103,6 +103,8 @@ def run_test( max_model_len=448, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, + # TODO (NickLucche) figure out output differences with non-eager and re-enable + enforce_eager=True, ) as vllm_model: llm = vllm_model.llm diff --git a/vllm/config/vllm.py b/vllm/config/vllm.py index 8f27db0013305..607bb44cddd26 100644 --- a/vllm/config/vllm.py +++ b/vllm/config/vllm.py @@ -666,8 +666,9 @@ class VllmConfig: default_config = OPTIMIZATION_LEVEL_TO_CONFIG[self.optimization_level] self._apply_optimization_level_defaults(default_config) + if ( - self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE + self.compilation_config.cudagraph_mode.requires_piecewise_compilation() and self.compilation_config.mode != CompilationMode.VLLM_COMPILE ): logger.info( @@ -692,22 +693,29 @@ class VllmConfig: if current_platform.support_static_graph_mode(): # if cudagraph_mode has full cudagraphs, we need to check support - if ( - self.compilation_config.cudagraph_mode.has_full_cudagraphs() - and self.model_config is not None - ): - if self.model_config.pooler_config is not None: + if model_config := self.model_config: + if ( + self.compilation_config.cudagraph_mode.has_full_cudagraphs() + and model_config.pooler_config is not None + ): logger.warning_once( "Pooling models do not support full cudagraphs. " "Overriding cudagraph_mode to PIECEWISE." ) self.compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE - elif self.model_config.is_encoder_decoder: - logger.warning_once( - "Encoder-decoder models do not support full cudagraphs. " - "Overriding cudagraph_mode to PIECEWISE." + elif ( + model_config.is_encoder_decoder + and self.compilation_config.cudagraph_mode + not in (CUDAGraphMode.NONE, CUDAGraphMode.FULL_DECODE_ONLY) + ): + logger.info_once( + "Encoder-decoder models do not support %s. " + "Overriding cudagraph_mode to FULL_DECODE_ONLY.", + self.compilation_config.cudagraph_mode.name, + ) + self.compilation_config.cudagraph_mode = ( + CUDAGraphMode.FULL_DECODE_ONLY ) - self.compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE # disable cudagraph when enforce eager execution if self.model_config is not None and self.model_config.enforce_eager: diff --git a/vllm/v1/worker/gpu_model_runner.py b/vllm/v1/worker/gpu_model_runner.py index 39456d2e80ed0..ca06f048f290b 100644 --- a/vllm/v1/worker/gpu_model_runner.py +++ b/vllm/v1/worker/gpu_model_runner.py @@ -1267,6 +1267,8 @@ class GPUModelRunner( if not isinstance(kv_cache_spec, CrossAttentionSpec): return None, None + # Zero out buffer for padding requests that are not actually scheduled (CGs) + self.encoder_seq_lens.np[:num_reqs] = 0 # Build encoder_seq_lens array mapping request indices to # encoder lengths for inputs scheduled in this batch for req_id in num_scheduled_tokens: @@ -2764,6 +2766,7 @@ class GPUModelRunner( # be improved in model runner v2) force_uniform_decode: bool | None = None, force_has_lora: bool | None = None, + num_encoder_reqs: int = 0, ) -> tuple[ CUDAGraphMode, BatchDescriptor, @@ -2780,6 +2783,11 @@ class GPUModelRunner( if force_uniform_decode is None else force_uniform_decode ) + # Encoder-decoder models only support CG for decoder_step > 0 (no enc_output + # is present). Also, chunked-prefill is disabled, so batch are uniform. + has_encoder_output = ( + self.model_config.is_encoder_decoder and num_encoder_reqs > 0 + ) has_lora = ( len(self.input_batch.lora_id_to_lora_request) > 0 @@ -2799,7 +2807,7 @@ class GPUModelRunner( ) cudagraph_mode, batch_descriptor = dispatch_cudagraph( - num_tokens_padded, use_cascade_attn + num_tokens_padded, use_cascade_attn or has_encoder_output ) num_tokens_padded = batch_descriptor.num_tokens @@ -2997,6 +3005,7 @@ class GPUModelRunner( num_scheduled_tokens_np=num_scheduled_tokens_np, max_num_scheduled_tokens=max_num_scheduled_tokens, use_cascade_attn=cascade_attn_prefix_lens is not None, + num_encoder_reqs=len(scheduler_output.scheduled_encoder_inputs), ) logger.debug(