mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 08:04:58 +08:00
[Bugfix] Remove xformers requirement for Pixtral (#9597)
Signed-off-by: mgoin <michael@neuralmagic.com>
This commit is contained in:
parent
59449095ab
commit
c91ed47c43
@ -14,8 +14,6 @@ from transformers.models.pixtral.image_processing_pixtral import (
|
||||
_num_image_tokens)
|
||||
from transformers.models.pixtral.modeling_pixtral import (
|
||||
PixtralRotaryEmbedding, apply_rotary_pos_emb, position_ids_in_meshgrid)
|
||||
from xformers.ops.fmha import memory_efficient_attention
|
||||
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
|
||||
|
||||
from vllm.attention import AttentionMetadata
|
||||
from vllm.config import CacheConfig, ModelConfig, MultiModalConfig
|
||||
@ -38,6 +36,12 @@ from vllm.utils import is_list_of
|
||||
from .interfaces import SupportsMultiModal, SupportsPP
|
||||
from .utils import init_vllm_registered_model
|
||||
|
||||
try:
|
||||
from xformers import ops as xops
|
||||
USE_XFORMERS_OPS = True
|
||||
except ImportError:
|
||||
USE_XFORMERS_OPS = False
|
||||
|
||||
|
||||
def get_max_pixtral_image_tokens(ctx: InputContext):
|
||||
tokenizer = cached_get_tokenizer(
|
||||
@ -416,7 +420,7 @@ class Attention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: BlockDiagonalMask,
|
||||
mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
batch, patches, _ = x.shape
|
||||
@ -427,7 +431,7 @@ class Attention(nn.Module):
|
||||
v = v.reshape(batch, patches, self.n_heads, self.head_dim)
|
||||
|
||||
q, k = apply_rotary_emb_vit(q, k, freqs_cis=freqs_cis)
|
||||
out = memory_efficient_attention(q, k, v, attn_bias=mask)
|
||||
out = xops.memory_efficient_attention(q, k, v, attn_bias=mask)
|
||||
out = out.reshape(batch, patches, self.n_heads * self.head_dim)
|
||||
return self.wo(out)
|
||||
|
||||
@ -444,7 +448,7 @@ class TransformerBlock(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: BlockDiagonalMask,
|
||||
mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
r = self.attention.forward(self.attention_norm(x),
|
||||
@ -467,7 +471,7 @@ class Transformer(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
mask: BlockDiagonalMask,
|
||||
mask: torch.Tensor,
|
||||
freqs_cis: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
for layer in self.layers:
|
||||
@ -562,8 +566,12 @@ class VisionTransformer(nn.Module):
|
||||
freqs_cis = self.freqs_cis[positions[:, 0], positions[:, 1]]
|
||||
|
||||
# pass through Transformer with a block diagonal mask delimiting images
|
||||
mask = BlockDiagonalMask.from_seqlens(
|
||||
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list], )
|
||||
if USE_XFORMERS_OPS:
|
||||
mask = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(
|
||||
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list], )
|
||||
else:
|
||||
raise ImportError("Xformers is required for Pixtral inference "
|
||||
"with the Mistral format")
|
||||
out = self.transformer(patch_embeds, mask=mask, freqs_cis=freqs_cis)
|
||||
|
||||
# remove batch dimension of the single sequence
|
||||
@ -828,7 +836,7 @@ class PixtralHFAttention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: BlockDiagonalMask,
|
||||
attention_mask: torch.Tensor,
|
||||
position_embeddings: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
batch, patches, _ = hidden_states.size()
|
||||
@ -843,12 +851,23 @@ class PixtralHFAttention(nn.Module):
|
||||
cos, sin = position_embeddings
|
||||
q, k = apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=0)
|
||||
|
||||
# Transpose q and k back for attention
|
||||
q = q.transpose(1, 2).contiguous()
|
||||
k = k.transpose(1, 2).contiguous()
|
||||
v = v.reshape(batch, patches, self.n_heads, self.head_dim)
|
||||
if USE_XFORMERS_OPS:
|
||||
# Transpose q and k back for attention
|
||||
q = q.transpose(1, 2).contiguous()
|
||||
k = k.transpose(1, 2).contiguous()
|
||||
v = v.reshape(batch, patches, self.n_heads, self.head_dim)
|
||||
|
||||
out = xops.memory_efficient_attention(q,
|
||||
k,
|
||||
v,
|
||||
attn_bias=attention_mask)
|
||||
else:
|
||||
v = v.reshape(batch, patches, self.n_heads,
|
||||
self.head_dim).transpose(1, 2)
|
||||
out = nn.functional.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=attention_mask)
|
||||
out = out.transpose(1, 2)
|
||||
|
||||
out = memory_efficient_attention(q, k, v, attn_bias=attention_mask)
|
||||
out = out.reshape(batch, patches, self.n_heads * self.head_dim)
|
||||
|
||||
return self.o_proj(out)
|
||||
@ -877,7 +896,7 @@ class PixtralHFTransformerBlock(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: BlockDiagonalMask,
|
||||
attention_mask: torch.Tensor,
|
||||
position_embeddings: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
r = self.attention.forward(self.attention_norm(hidden_states),
|
||||
@ -916,7 +935,7 @@ class PixtralHFTransformer(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
attention_mask: BlockDiagonalMask,
|
||||
attention_mask: torch.Tensor,
|
||||
position_embeddings: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
for layer in self.layers:
|
||||
@ -1000,11 +1019,19 @@ class PixtralHFVisionModel(nn.Module):
|
||||
patch_embeds_list,
|
||||
max_width=self.config.image_size // self.config.patch_size).to(
|
||||
self.device)
|
||||
|
||||
position_embedding = self.patch_positional_embedding(
|
||||
patch_embeds, position_ids)
|
||||
attention_mask = BlockDiagonalMask.from_seqlens(
|
||||
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list], )
|
||||
|
||||
if USE_XFORMERS_OPS:
|
||||
attention_mask = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(
|
||||
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list], )
|
||||
else:
|
||||
from transformers.models.pixtral.modeling_pixtral import (
|
||||
generate_block_attention_mask)
|
||||
attention_mask = generate_block_attention_mask(
|
||||
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list],
|
||||
patch_embeds)
|
||||
|
||||
out = self.transformer(patch_embeds, attention_mask,
|
||||
position_embedding)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user