[UX] Add FlashInfer as default CUDA dependency (#26443)

Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
This commit is contained in:
Michael Goin 2025-10-09 17:10:02 -04:00 committed by GitHub
parent 2e54db4d2b
commit c9d33c60dc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 19 additions and 71 deletions

View File

@ -356,75 +356,14 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
uv pip install --system dist/*.whl --verbose \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# If we need to build FlashInfer wheel before its release:
# $ # Note we remove 7.0 from the arch list compared to the list below, since FlashInfer only supports sm75+
# $ export TORCH_CUDA_ARCH_LIST='7.5 8.0 8.9 9.0a 10.0a 12.0'
# $ git clone https://github.com/flashinfer-ai/flashinfer.git --recursive
# $ cd flashinfer
# $ git checkout v0.2.6.post1
# $ python -m flashinfer.aot
# $ python -m build --no-isolation --wheel
# $ ls -la dist
# -rw-rw-r-- 1 mgoin mgoin 205M Jun 9 18:03 flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/v0.2.6.post1/flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
# Install FlashInfer pre-compiled kernel cache and binaries
# https://docs.flashinfer.ai/installation.html
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system flashinfer-cubin==0.4.0 \
&& uv pip install --system flashinfer-jit-cache==0.4.0 \
--extra-index-url https://flashinfer.ai/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.') \
&& flashinfer show-config
# Install FlashInfer from source
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
# Keep this in sync with "flashinfer" extra in setup.py
ARG FLASHINFER_GIT_REF="v0.4.0"
# Flag to control whether to compile FlashInfer AOT kernels
# Set to "true" to enable AOT compilation:
# docker build --build-arg FLASHINFER_AOT_COMPILE=true ...
ARG FLASHINFER_AOT_COMPILE=false
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
. /etc/environment
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
${FLASHINFER_GIT_REPO} flashinfer
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
pushd flashinfer
if [[ "${CUDA_VERSION}" == 12.8.* ]] && [ "$TARGETPLATFORM" = "linux/amd64" ] && [ "${FLASHINFER_GIT_REF}" = "v0.3.1" ]; then
# NOTE: To make new precompiled wheels, see tools/flashinfer-build.sh
echo "🏗️ Installing FlashInfer from pre-compiled wheel"
uv pip install --system https://wheels.vllm.ai/flashinfer-python/flashinfer_python-0.3.1-cp39-abi3-manylinux1_x86_64.whl \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
if [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
# Download pre-compiled cubins
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
fi
elif [ "${FLASHINFER_AOT_COMPILE}" = "true" ]; then
echo "🏗️ Installing FlashInfer with AOT compilation for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
export FLASHINFER_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}"
# HACK: We need these to run flashinfer.aot before installing flashinfer, get from the package in the future
uv pip install --system cuda-python==$(echo $CUDA_VERSION | cut -d. -f1,2) pynvml==$(echo $CUDA_VERSION | cut -d. -f1) nvidia-nvshmem-cu$(echo $CUDA_VERSION | cut -d. -f1)
# Build AOT kernels
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer.aot
# Install with no-build-isolation since we already built AOT kernels
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
uv pip install --system --no-build-isolation . \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# Download pre-compiled cubins
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer --download-cubin || echo "WARNING: Failed to download flashinfer cubins."
else
echo "🏗️ Installing FlashInfer without AOT compilation in JIT mode"
uv pip install --system . \
--extra-index-url ${PYTORCH_CUDA_INDEX_BASE_URL}/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
fi
popd
rm -rf flashinfer
BASH
COPY examples examples
COPY benchmarks benchmarks
COPY ./vllm/collect_env.py .

View File

@ -11,3 +11,5 @@ torchaudio==2.8.0
torchvision==0.23.0 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
# https://github.com/facebookresearch/xformers/releases/tag/v0.0.32.post1
xformers==0.0.32.post1; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch >= 2.8
# FlashInfer should be updated together with the Dockerfile
flashinfer-python==0.4.0

View File

@ -714,8 +714,7 @@ setup(
"mistral_common[audio]",
], # Required for audio processing
"video": [], # Kept for backwards compatibility
# FlashInfer should be updated together with the Dockerfile
"flashinfer": ["flashinfer-python==0.4.0"],
"flashinfer": [], # Kept for backwards compatibility
# Optional deps for AMD FP4 quantization support
"petit-kernel": ["petit-kernel"],
},

View File

@ -12,6 +12,7 @@ import functools
import importlib
import importlib.util
import os
import shutil
from typing import Any, Callable, NoReturn
import requests
@ -37,7 +38,14 @@ def has_flashinfer() -> bool:
"""Return ``True`` if FlashInfer is available."""
# Use find_spec to check if the module exists without importing it
# This avoids potential CUDA initialization side effects
return importlib.util.find_spec("flashinfer") is not None
if importlib.util.find_spec("flashinfer") is None:
logger.debug_once("FlashInfer unavailable since package was not found")
return False
# Also check if nvcc is available since it's required to JIT compile flashinfer
if shutil.which("nvcc") is None:
logger.debug_once("FlashInfer unavailable since nvcc was not found")
return False
return True
def _missing(*_: Any, **__: Any) -> NoReturn: